Python cv2.startWindowThread() Examples
The following are 20
code examples of cv2.startWindowThread().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: homography.py From nelpy with MIT License | 6 votes |
def pick_corrs(images, n_pts_to_pick=4): data = [ [[], 0, False, False, False, image, "Image %d" % i, n_pts_to_pick] for i, image in enumerate(images)] for d in data: win_name = d[6] cv2.namedWindow(win_name) cv2.setMouseCallback(win_name, corr_picker_callback, d) cv2.startWindowThread() cv2.imshow(win_name, d[5]) key = None while key != '\n' and key != '\r' and key != 'q': key = cv2.waitKey(33) key = chr(key & 255) if key >= 0 else None cv2.destroyAllWindows() if key == 'q': return None else: return [d[0] for d in data]
Example #2
Source File: preview.py From rtsp with MIT License | 6 votes |
def preview_stream(stream): """ Display stream in an OpenCV window until "q" key is pressed """ # together with waitkeys later, helps to close the video window effectively _cv2.startWindowThread() for frame in stream.frame_generator(): if frame is not None: _cv2.imshow('Video', frame) _cv2.moveWindow('Video',5,5) else: break key = _cv2.waitKey(1) & 0xFF if key == ord("q"): break _cv2.waitKey(1) _cv2.destroyAllWindows() _cv2.waitKey(1)
Example #3
Source File: emulator.py From fathom with Apache License 2.0 | 6 votes |
def __init__(self, rom_name, vis,frameskip=1,windowname='preview'): self.ale = ALEInterface() self.max_frames_per_episode = self.ale.getInt("max_num_frames_per_episode"); self.ale.setInt("random_seed",123) self.ale.setInt("frame_skip",frameskip) romfile = str(ROM_PATH)+str(rom_name) if not os.path.exists(romfile): print('No ROM file found at "'+romfile+'".\nAdjust ROM_PATH or double-check the filt exists.') self.ale.loadROM(romfile) self.legal_actions = self.ale.getMinimalActionSet() self.action_map = dict() self.windowname = windowname for i in range(len(self.legal_actions)): self.action_map[self.legal_actions[i]] = i # print(self.legal_actions) self.screen_width,self.screen_height = self.ale.getScreenDims() print("width/height: " +str(self.screen_width) + "/" + str(self.screen_height)) self.vis = vis if vis: cv2.startWindowThread() cv2.namedWindow(self.windowname, flags=cv2.WINDOW_AUTOSIZE) # permit manual resizing
Example #4
Source File: sensor.py From pypot with GNU General Public License v3.0 | 6 votes |
def run(self): cv2.startWindowThread() while True: img = numpy.zeros((480, 640, 3)) skeleton = kinect.tracked_skeleton if skeleton: for user, skel in skeleton.items(): for joint_name in skel.joints: x, y = getattr(skel, joint_name).pixel_coordinate pt = (int(x), int(y)) cv2.circle(img, pt, 5, (255, 255, 255), thickness=-1) kinect.remove_all_users() cv2.imshow('Skeleton', img) cv2.waitKey(50) self.sub_skel.close() self.context.term()
Example #5
Source File: gen_sentence_with_emoticons.py From Real-Time-Facial-Expression-Recognition-with-DeepLearning with MIT License | 6 votes |
def main(): ''' Arguments to be set: showCam : determine if show the camera preview screen. ''' print("Enter main() function") capture = getCameraStreaming() cv2.startWindowThread() cv2.namedWindow(windowsName, cv2.WND_PROP_FULLSCREEN) cv2.setWindowProperty(windowsName, cv2.WND_PROP_FULLSCREEN, cv2.WND_PROP_FULLSCREEN) while True: recContent = speechRecognition() if recContent is not None: emotion = showScreenAndDectect(capture) if emotion == "Angry": emoji = " >:O" elif emotion == "Fear": emoji = " :-S" elif emotion == "Happy": emoji = " :-D" elif emotion == "Sad": emoji = " :'(" elif emotion == "Surprise": emoji = " :-O" else: emoji = " " print("Output result: " + recContent + emoji)
Example #6
Source File: webcam_detection.py From Real-Time-Facial-Expression-Recognition-with-DeepLearning with MIT License | 6 votes |
def main(): ''' Arguments to be set: showCam : determine if show the camera preview screen. ''' print("Enter main() function") if args.testImage is not None: img = cv2.imread(args.testImage) img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img = cv2.resize(img, FACE_SHAPE) print(class_label[result[0]]) sys.exit(0) showCam = 1 capture = getCameraStreaming() if showCam: cv2.startWindowThread() cv2.namedWindow(windowsName, cv2.WND_PROP_FULLSCREEN) cv2.setWindowProperty(windowsName, cv2.WND_PROP_FULLSCREEN, cv2.WND_PROP_FULLSCREEN) showScreenAndDectect(capture)
Example #7
Source File: main.py From Stereo-Pose-Machines with GNU General Public License v2.0 | 6 votes |
def dump_2dcoor(): camera = libcpm.Camera() camera.setup() runner = get_parallel_runner('../data/cpm.npy') cv2.namedWindow('color') cv2.startWindowThread() cnt = 0 while True: cnt += 1 m1 = camera.get_for_py(0) m1 = np.array(m1, copy=False) m2 = camera.get_for_py(1) m2 = np.array(m2, copy=False) o1, o2 = runner(m1, m2) pts = [] for k in range(14): pts.append((argmax_2d(o1[:,:,k]), argmax_2d(o2[:,:,k]))) pts = np.asarray(pts) np.save('pts{}.npy'.format(cnt), pts) cv2.imwrite("frame{}.png".format(cnt), m1); if cnt == 10: break
Example #8
Source File: main.py From Stereo-Pose-Machines with GNU General Public License v2.0 | 5 votes |
def stereo_cpm_viewer(): camera = libcpm.Camera() camera.setup() runner = get_parallel_runner('../data/cpm.npy') cv2.namedWindow('color') cv2.startWindowThread() cnt = 0 while True: cnt += 1 m1 = camera.get_for_py(0) m1 = np.array(m1, copy=False) m2 = camera.get_for_py(1) m2 = np.array(m2, copy=False) m1s = cv2.resize(m1, (368,368)) m2s = cv2.resize(m2, (368,368)) o1, o2 = runner(m1s, m2s) #buf = dumps([m1, m2, o1, o2]) #f = open('recording/{:03d}.npy'.format(cnt), 'w') #f.write(buf) #f.close() c1 = colorize(m1, o1[:,:,:-1].sum(axis=2)) c2 = colorize(m2, o2[:,:,:-1].sum(axis=2)) viz = np.concatenate((c1, c2), axis=1) cv2.imshow('color', viz / 255.0)
Example #9
Source File: Utils_Image.py From Tensorflow_Object_Tracking_Video with MIT License | 5 votes |
def resizeImage(file_path): #Resize Cropping & Padding an image to the 640x480 pixel size if file_path is not -1: if check_image_with_pil(file_path): image = Image.open(file_path) image.thumbnail(size, Image.ANTIALIAS) image_size = image.size padding_0 = max( (size[0] - image_size[0]) / 2, 0 ) padding_1 = max( (size[1] - image_size[1]) / 2, 0 ) cv2.namedWindow('Original Image') cv2.namedWindow('Resized Image') cv2.startWindowThread() orig_img = cv2.imread(file_path, 0) cv2.imshow('Original Image',orig_img) cv2.waitKey(2) if((padding_0==0) & (padding_1==0)): image.save(file_path, img_save_type) else: thumb = image.crop( (0, 0, size[0], size[1]) ) thumb = ImageChops.offset(thumb, int(padding_0), int(padding_1)) thumb.save(file_path) resized_img = cv2.imread(file_path, 0) cv2.imshow('Resized Image',resized_img) else : cv2.destroyAllWindows() cv2.waitKey(2)
Example #10
Source File: display_video.py From detectron2-pipeline with MIT License | 5 votes |
def __init__(self, src, window_name=None, org=None): self.src = src self.window_name = window_name if window_name else src cv2.startWindowThread() cv2.namedWindow(self.window_name, cv2.WINDOW_AUTOSIZE) if org: # Set the window position x, y = org cv2.moveWindow(self.window_name, x, y) super().__init__()
Example #11
Source File: test_scripts.py From deepface with MIT License | 5 votes |
def test_ssd(): face_detector = FaceDetectorSSDMobilenetV2() image = os.path.join( os.path.dirname(os.path.realpath(__file__)), "samples/blackpink/blackpink4.jpg") print("image path is: " + image) test_image = cv2.imread(image, cv2.IMREAD_COLOR) faces = face_detector.detect(test_image) for face in faces: cv2.rectangle(test_image,(int(face.x),int(face.y)),(int(face.x + face.w), int(face.y + face.h)), (0,255,0),3) window_name = "image" cv2.namedWindow(window_name, cv2.WND_PROP_AUTOSIZE) cv2.startWindowThread() cv2.imshow('image', test_image) cv2.waitKey(0) cv2.destroyAllWindows() cv2.waitKey(1) print("done showing face annotated image!") for face in faces: print(face.face_landmark) print("done")
Example #12
Source File: test_scripts.py From deepface with MIT License | 5 votes |
def test_ssd_webcam(): cap = cv2.VideoCapture(0) # Define the codec and create VideoWriter object fourcc = cv2.VideoWriter_fourcc(*'MP4V') out = cv2.VideoWriter('ssd_output.mp4', fourcc, 60.0, (640, 480)) face_detector = FaceDetectorSSDMobilenetV2() while(True): ret, frame = cap.read() test_image = frame faces = face_detector.detect(test_image) for face in faces: cv2.rectangle(test_image,(int(face.x),int(face.y)),(int(face.x + face.w), int(face.y + face.h)), (0,255,0),3) window_name = "image" cv2.namedWindow(window_name, cv2.WND_PROP_AUTOSIZE) cv2.startWindowThread() out.write(test_image) cv2.imshow(window_name, test_image) if cv2.waitKey(5) & 0xFF == ord('q'): break cap.release() out.release() cv2.destroyAllWindows()
Example #13
Source File: get_augmentation.py From AUNets with MIT License | 5 votes |
def imshow(image): import cv2 as cv if isinstance(image, str): image = cv.imread(image) cv.startWindowThread() cv.namedWindow('Image', cv.WINDOW_NORMAL) cv.imshow('Image', image)
Example #14
Source File: OF_resizeBP4D.py From AUNets with MIT License | 5 votes |
def imshow(image, name=0): import cv2 as cv if isinstance(image, str): image = cv.imread(image) cv.startWindowThread() cv.namedWindow(str(name), cv.WINDOW_NORMAL) cv.imshow(str(name), image)
Example #15
Source File: display_video.py From image-processing-pipeline with MIT License | 5 votes |
def __init__(self, src, window_name=None, org=None): self.src = src self.window_name = window_name if window_name else src cv2.startWindowThread() cv2.namedWindow(self.window_name, cv2.WINDOW_AUTOSIZE) if org: # Set the window position x, y = org cv2.moveWindow(self.window_name, x, y) super(DisplayVideo, self).__init__()
Example #16
Source File: mylib.py From anomaly-event-detection with MIT License | 4 votes |
def dispOpticalFlow (Image, Flow, Divisor, name ): """ Display image with a visualisation of a flow over the top. A divisor controls the density of the quiver plot. Arguments: Image: Image on which to display flow lines Flow : Flow vectors x and y Divisor: Spacing between the arrow nodes name: Name of the window """ PictureShape = np.shape (Image) # determine number of quiver points there will be Imax = int (PictureShape[0] / Divisor) Jmax = int (PictureShape[1] / Divisor) # create a blank mask, on which lines will be drawn. mask = np.zeros_like (Image) panel = np.zeros_like (Image) for i in range (1, Imax): for j in range (1, Jmax): X1 = (i) * Divisor Y1 = (j) * Divisor X2 = int (X1 + Flow[X1, Y1, 1]) Y2 = int (Y1 + Flow[X1, Y1, 0]) X2 = np.clip (X2, 0, PictureShape[0]) Y2 = np.clip (Y2, 0, PictureShape[1]) # add all the lines to the mask mask = cv2.arrowedLine (mask, (Y1, X1), (Y2, X2), [255, 255, 255], 1) # To show only arrows in the image # cv2.namedWindow("Panel", 0) # panel = panel+mask # cv2.imshow("Panel", panel) # superpose lines onto image img = cv2.add (Image, mask) # print image cv2.startWindowThread () cv2.namedWindow (name, 0) cv2.imshow (name, img) return []
Example #17
Source File: emulator.py From tensorflow-rl with Apache License 2.0 | 4 votes |
def __init__(self, rom_path, rom_name, visualize, actor_id, rseed, single_life_episodes = False): self.ale = ALEInterface() self.ale.setInt("random_seed", rseed * (actor_id +1)) # For fuller control on explicit action repeat (>= ALE 0.5.0) self.ale.setFloat("repeat_action_probability", 0.0) # Disable frame_skip and color_averaging # See: http://is.gd/tYzVpj self.ale.setInt("frame_skip", 1) self.ale.setBool("color_averaging", False) self.ale.loadROM(rom_path + "/" + rom_name + ".bin") self.legal_actions = self.ale.getMinimalActionSet() self.screen_width,self.screen_height = self.ale.getScreenDims() #self.ale.setBool('display_screen', True) # Processed historcal frames that will be fed in to the network # (i.e., four 84x84 images) self.screen_images_processed = np.zeros((IMG_SIZE_X, IMG_SIZE_Y, NR_IMAGES)) self.rgb_screen = np.zeros((self.screen_height,self.screen_width, 3), dtype=np.uint8) self.gray_screen = np.zeros((self.screen_height,self.screen_width,1), dtype=np.uint8) self.frame_pool = np.empty((2, self.screen_height, self.screen_width)) self.current = 0 self.lives = self.ale.lives() self.visualize = visualize self.visualize_processed = False self.windowname = rom_name + ' ' + str(actor_id) if self.visualize: logger.debug("Opening emulator window...") #from skimage import io #io.use_plugin('qt') cv2.startWindowThread() cv2.namedWindow(self.windowname) logger.debug("Emulator window opened") if self.visualize_processed: logger.debug("Opening processed frame window...") cv2.startWindowThread() logger.debug("Processed frame window opened") cv2.namedWindow(self.windowname + "_processed") self.single_life_episodes = single_life_episodes
Example #18
Source File: visualizer_seq.py From MBMD with MIT License | 4 votes |
def evaluate(create_input_dict_fn, create_model_fn, eval_config, categories, checkpoint_dir, eval_dir, image_root): """Evaluation function for detection models. Args: create_input_dict_fn: a function to create a tensor input dictionary. create_model_fn: a function that creates a DetectionModel. eval_config: a eval_pb2.EvalConfig protobuf. categories: a list of category dictionaries. Each dict in the list should have an integer 'id' field and string 'name' field. checkpoint_dir: directory to load the checkpoints to evaluate from. eval_dir: directory to write evaluation metrics summary to. """ model = create_model_fn() tensor_dict = _extract_prediction_tensors( model=model, create_input_dict_fn=create_input_dict_fn, image_root=image_root, ignore_groundtruth=eval_config.ignore_groundtruth) def _display_batch(tensor_dict, sess): res_tensor = sess.run(tensor_dict) original_images = ((res_tensor['original_image'] + 1)/2*255).astype(np.uint8) gt_boxes = res_tensor['groundtruth_boxes'] detection_box = res_tensor['detection_boxes'][0] cv2.namedWindow('1') cv2.rectangle(original_images[0,0], (gt_boxes[0][1], gt_boxes[0][0]), (gt_boxes[0][3], gt_boxes[0][2]), [255,0,0], 2) cv2.imshow('1', original_images[0,0,:,:,-1::-1]) cv2.namedWindow('2') cv2.rectangle(original_images[0, 1], (gt_boxes[1][1], gt_boxes[1][0]), (gt_boxes[1][3], gt_boxes[1][2]), [255, 0, 0], 2) cv2.rectangle(original_images[0, 1], (detection_box[1], detection_box[0]), (detection_box[3], detection_box[2]), [0, 255, 0], 2) cv2.imshow('2', original_images[0, 1, :, :, -1::-1]) print("Detection Score %f"%(res_tensor['detection_scores'][0])) variables_to_restore = tf.global_variables() global_step = slim.get_or_create_global_step() variables_to_restore.append(global_step) if eval_config.use_moving_averages: variable_averages = tf.train.ExponentialMovingAverage(0.0) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) def _restore_latest_checkpoint(sess): latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir) saver.restore(sess, latest_checkpoint) sess = tf.Session() sess.run(tf.global_variables_initializer()) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord, sess=sess) _restore_latest_checkpoint(sess) cv2.startWindowThread() for i in range(5000): _display_batch(tensor_dict, sess)
Example #19
Source File: visualizer.py From MBMD with MIT License | 4 votes |
def evaluate(create_input_dict_fn, create_model_fn, eval_config, categories, checkpoint_dir, eval_dir, image_root): """Evaluation function for detection models. Args: create_input_dict_fn: a function to create a tensor input dictionary. create_model_fn: a function that creates a DetectionModel. eval_config: a eval_pb2.EvalConfig protobuf. categories: a list of category dictionaries. Each dict in the list should have an integer 'id' field and string 'name' field. checkpoint_dir: directory to load the checkpoints to evaluate from. eval_dir: directory to write evaluation metrics summary to. """ model = create_model_fn() tensor_dict = _extract_prediction_tensors( model=model, create_input_dict_fn=create_input_dict_fn, image_root=image_root, ignore_groundtruth=eval_config.ignore_groundtruth) def _display_batch(tensor_dict, sess): res_tensor = sess.run(tensor_dict) original_images = ((res_tensor['original_image'] + 1)/2*255).astype(np.uint8) gt_boxes = res_tensor['groundtruth_boxes'] detection_box = res_tensor['detection_boxes'][0] cv2.namedWindow('1') cv2.rectangle(original_images[0,0], (gt_boxes[0][1], gt_boxes[0][0]), (gt_boxes[0][3], gt_boxes[0][2]), [255,0,0], 2) cv2.imshow('1', original_images[0,0,:,:,-1::-1]) cv2.namedWindow('2') cv2.rectangle(original_images[0, 1], (gt_boxes[1][1], gt_boxes[1][0]), (gt_boxes[1][3], gt_boxes[1][2]), [255, 0, 0], 2) cv2.rectangle(original_images[0, 1], (detection_box[1], detection_box[0]), (detection_box[3], detection_box[2]), [0, 255, 0], 2) cv2.imshow('2', original_images[0, 1, :, :, -1::-1]) print("Detection Score %f"%(res_tensor['detection_scores'][0])) variables_to_restore = tf.global_variables() global_step = slim.get_or_create_global_step() variables_to_restore.append(global_step) if eval_config.use_moving_averages: variable_averages = tf.train.ExponentialMovingAverage(0.0) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) def _restore_latest_checkpoint(sess): latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir) saver.restore(sess, latest_checkpoint) sess = tf.Session() sess.run(tf.global_variables_initializer()) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord, sess=sess) _restore_latest_checkpoint(sess) cv2.startWindowThread() for i in range(5000): _display_batch(tensor_dict, sess)
Example #20
Source File: emulator.py From async-deep-rl with Apache License 2.0 | 4 votes |
def __init__(self, rom_path, rom_name, visualize, actor_id, rseed, single_life_episodes = False): self.ale = ALEInterface() self.ale.setInt("random_seed", rseed * (actor_id +1)) # For fuller control on explicit action repeat (>= ALE 0.5.0) self.ale.setFloat("repeat_action_probability", 0.0) # Disable frame_skip and color_averaging # See: http://is.gd/tYzVpj self.ale.setInt("frame_skip", 1) self.ale.setBool("color_averaging", False) self.ale.loadROM(rom_path + "/" + rom_name + ".bin") self.legal_actions = self.ale.getMinimalActionSet() self.screen_width,self.screen_height = self.ale.getScreenDims() #self.ale.setBool('display_screen', True) # Processed historcal frames that will be fed in to the network # (i.e., four 84x84 images) self.screen_images_processed = np.zeros((IMG_SIZE_X, IMG_SIZE_Y, NR_IMAGES)) self.rgb_screen = np.zeros((self.screen_height,self.screen_width, 3), dtype=np.uint8) self.gray_screen = np.zeros((self.screen_height,self.screen_width,1), dtype=np.uint8) self.frame_pool = np.empty((2, self.screen_height, self.screen_width)) self.current = 0 self.lives = self.ale.lives() self.visualize = visualize self.visualize_processed = False self.windowname = rom_name + ' ' + str(actor_id) if self.visualize: logger.debug("Opening emulator window...") #from skimage import io #io.use_plugin('qt') cv2.startWindowThread() cv2.namedWindow(self.windowname) logger.debug("Emulator window opened") if self.visualize_processed: logger.debug("Opening processed frame window...") cv2.startWindowThread() logger.debug("Processed frame window opened") cv2.namedWindow(self.windowname + "_processed") self.single_life_episodes = single_life_episodes