Python cv2.FastFeatureDetector_create() Examples
The following are 7
code examples of cv2.FastFeatureDetector_create().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: 04_fast_feature.py From Practical-Computer-Vision with MIT License | 8 votes |
def compute_fast_det(filename, is_nms=True, thresh = 10): img = cv2.imread(filename) # Initiate FAST object with default values fast = cv2.FastFeatureDetector_create() #FastFeatureDetector() # find and draw the keypoints if not is_nms: fast.setNonmaxSuppression(0) fast.setThreshold(thresh) kp = fast.detect(img,None) cv2.drawKeypoints(img, kp, img, color=(255,0,0)) return img
Example #2
Source File: optical_flow.py From self-driving with MIT License | 5 votes |
def __init__(self, videoSource, featurePtMask=None, verbosity=0): # cap the length of optical flow tracks self.maxTrackLength = 10 # detect feature points in intervals of frames; adds robustness for # when feature points disappear. self.detectionInterval = 5 # Params for Shi-Tomasi corner (feature point) detection self.featureParams = dict( maxCorners=500, qualityLevel=0.3, minDistance=7, blockSize=7 ) # Params for Lucas-Kanade optical flow self.lkParams = dict( winSize=(15, 15), maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03) ) # # Alternatively use a fast feature detector # self.fast = cv2.FastFeatureDetector_create(500) self.verbosity = verbosity (self.videoStream, self.width, self.height, self.featurePtMask) = self._initializeCamera(videoSource)
Example #3
Source File: klt.py From imips_open with GNU General Public License v3.0 | 5 votes |
def __init__(self, target_n, nonmax_radius): self._scorer = cv2.FastFeatureDetector_create() self._target_n = target_n self._nonmax_radius = nonmax_radius
Example #4
Source File: klt.py From sips2_open with GNU General Public License v3.0 | 5 votes |
def __init__(self, target_n, nonmax_radius): self._scorer = cv2.FastFeatureDetector_create() self._target_n = target_n self._nonmax_radius = nonmax_radius
Example #5
Source File: visual_odometry.py From Monocular-Visual-Inertial-Odometry with MIT License | 5 votes |
def __init__(self, cam): self.frame_stage = 0 self.cam = cam self.new_frame = None self.last_frame = None self.cur_R = None self.cur_t = None self.px_ref = None self.px_cur = None self.focal = cam.fx self.pp = (cam.cx, cam.cy) #self.trueX, self.trueY, self.trueZ = 0, 0, 0 self.detector = cv2.FastFeatureDetector_create(threshold=25, nonmaxSuppression=True) #with open('poses.txt') as f: # self.annotations = f.readlines()
Example #6
Source File: loaders.py From hfnet with MIT License | 5 votes |
def fast_loader(image, name, **config): num_features = config.get('num_features', 0) do_nms = config.get('do_nms', False) nms_thresh = config.get('nms_thresh', 4) fast = cv2.FastFeatureDetector_create() kpts = fast.detect(image.astype(np.uint8), None) kpts, scores = keypoints_cv2np(kpts) if do_nms: keep = nms_fast(kpts, scores, image.shape[:2], nms_thresh) kpts, scores = kpts[keep], scores[keep] if num_features: keep_indices = np.argsort(scores)[::-1][:num_features] kpts, scores = [i[keep_indices] for i in [kpts, scores]] return {'keypoints': kpts, 'scores': scores}
Example #7
Source File: 04_sift_features.py From Practical-Computer-Vision with MIT License | 4 votes |
def compute_fast_det(img, is_nms=True, thresh = 10): gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # Initiate FAST object with default values fast = cv2.FastFeatureDetector_create() #FastFeatureDetector() # # find and draw the keypoints if not is_nms: fast.setNonmaxSuppression(0) fast.setThreshold(thresh) kp = fast.detect(img,None) cv2.drawKeypoints(img, kp, img, color=(255,0,0)) sift = cv2.SIFT() kp = sift.detect(gray,None) img=cv2.drawKeypoints(gray,kp) plt.figure(figsize=(12, 8)) plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) plt.axis('off') plt.show()