Python cv2.stereoCalibrate() Examples
The following are 3
code examples of cv2.stereoCalibrate().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: stereo_camera_calibration.py From stereoDepth with Apache License 2.0 | 8 votes |
def stereo_calibrate(left_file, right_file, left_dir, left_prefix, right_dir, right_prefix, image_format, save_file, square_size, width=9, height=6): """ Stereo calibration and rectification """ objp, leftp, rightp = load_image_points(left_dir, left_prefix, right_dir, right_prefix, image_format, square_size, width, height) K1, D1 = load_coefficients(left_file) K2, D2 = load_coefficients(right_file) flag = 0 # flag |= cv2.CALIB_FIX_INTRINSIC flag |= cv2.CALIB_USE_INTRINSIC_GUESS ret, K1, D1, K2, D2, R, T, E, F = cv2.stereoCalibrate(objp, leftp, rightp, K1, D1, K2, D2, image_size) print("Stereo calibration rms: ", ret) R1, R2, P1, P2, Q, roi_left, roi_right = cv2.stereoRectify(K1, D1, K2, D2, image_size, R, T, flags=cv2.CALIB_ZERO_DISPARITY, alpha=0.9) save_stereo_coefficients(save_file, K1, D1, K2, D2, R, T, E, F, R1, R2, P1, P2, Q)
Example #2
Source File: calibration.py From StereoVision with GNU General Public License v3.0 | 4 votes |
def calibrate_cameras(self): """Calibrate cameras based on found chessboard corners.""" criteria = (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS, 100, 1e-5) flags = (cv2.CALIB_FIX_ASPECT_RATIO + cv2.CALIB_ZERO_TANGENT_DIST + cv2.CALIB_SAME_FOCAL_LENGTH) calib = StereoCalibration() (calib.cam_mats["left"], calib.dist_coefs["left"], calib.cam_mats["right"], calib.dist_coefs["right"], calib.rot_mat, calib.trans_vec, calib.e_mat, calib.f_mat) = cv2.stereoCalibrate(self.object_points, self.image_points["left"], self.image_points["right"], self.image_size, calib.cam_mats["left"], calib.dist_coefs["left"], calib.cam_mats["right"], calib.dist_coefs["right"], calib.rot_mat, calib.trans_vec, calib.e_mat, calib.f_mat, criteria=criteria, flags=flags)[1:] (calib.rect_trans["left"], calib.rect_trans["right"], calib.proj_mats["left"], calib.proj_mats["right"], calib.disp_to_depth_mat, calib.valid_boxes["left"], calib.valid_boxes["right"]) = cv2.stereoRectify(calib.cam_mats["left"], calib.dist_coefs["left"], calib.cam_mats["right"], calib.dist_coefs["right"], self.image_size, calib.rot_mat, calib.trans_vec, flags=0) for side in ("left", "right"): (calib.undistortion_map[side], calib.rectification_map[side]) = cv2.initUndistortRectifyMap( calib.cam_mats[side], calib.dist_coefs[side], calib.rect_trans[side], calib.proj_mats[side], self.image_size, cv2.CV_32FC1) # This is replaced because my results were always bad. Estimates are # taken from the OpenCV samples. width, height = self.image_size focal_length = 0.8 * width calib.disp_to_depth_mat = np.float32([[1, 0, 0, -0.5 * width], [0, -1, 0, 0.5 * height], [0, 0, 0, -focal_length], [0, 0, 1, 0]]) return calib
Example #3
Source File: calibration_utils.py From depthai with MIT License | 3 votes |
def stereo_calibrate(self): """Calibrate camera and construct Homography.""" # init camera calibrations rt, self.M1, self.d1, self.r1, self.t1 = cv2.calibrateCamera( self.objpoints, self.imgpoints_l, self.img_shape, None, None) rt, self.M2, self.d2, self.r2, self.t2 = cv2.calibrateCamera( self.objpoints, self.imgpoints_r, self.img_shape, None, None) # config flags = 0 #flags |= cv2.CALIB_FIX_ASPECT_RATIO flags |= cv2.CALIB_USE_INTRINSIC_GUESS #flags |= cv2.CALIB_SAME_FOCAL_LENGTH #flags |= cv2.CALIB_ZERO_TANGENT_DIST flags |= cv2.CALIB_RATIONAL_MODEL #flags |= cv2.CALIB_FIX_K1 #flags |= cv2.CALIB_FIX_K2 #flags |= cv2.CALIB_FIX_K3 #flags |= cv2.CALIB_FIX_K4 #flags |= cv2.CALIB_FIX_K5 #flags |= cv2.CALIB_FIX_K6 stereocalib_criteria = (cv2.TERM_CRITERIA_COUNT + cv2.TERM_CRITERIA_EPS, 100, 1e-5) # stereo calibration procedure ret, self.M1, self.d1, self.M2, self.d2, R, T, E, F = cv2.stereoCalibrate( self.objpoints, self.imgpoints_l, self.imgpoints_r, self.M1, self.d1, self.M2, self.d2, self.img_shape, criteria=stereocalib_criteria, flags=flags) assert ret < 1.0, "[ERROR] Calibration RMS error < 1.0 (%i). Re-try image capture." % (ret) print("[OK] Calibration successful w/ RMS error=" + str(ret)) # construct Homography plane_depth = 40000000.0 # arbitrary plane depth #TODO: Need to understand effect of plane_depth. Why does this improve some boards' cals? n = np.array([[0.0], [0.0], [-1.0]]) d_inv = 1.0 / plane_depth H = (R - d_inv * np.dot(T, n.transpose())) self.H = np.dot(self.M2, np.dot(H, np.linalg.inv(self.M1))) self.H /= self.H[2, 2] # rectify Homography for right camera disparity = (self.M1[0, 0] * T[0] / plane_depth) self.H[0, 2] -= disparity self.H = self.H.astype(np.float32) print("Rectifying Homography...") print(self.H)