Python cv2.perspectiveTransform() Examples

The following are 30 code examples of cv2.perspectiveTransform(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module cv2 , or try the search function .
Example #1
Source File: distance_ransac_orb.py    From douglas-quaid with GNU General Public License v3.0 6 votes vote down vote up
def filter_matrix_corners_homography(pts, max, matrix) -> (float, List):
        '''
        Compute the images of the image corners and of its center (i.e. the points you get when you apply the homography to those corners and center),
        and verify that they make sense, i.e. are they inside the image canvas (if you expect them to be)? Are they well separated from each other?
        Return a distance and a list of the transformed points
        '''

        # Transform the 4 corners thanks to the transformation matrix calculated
        transformed_pts = cv2.perspectiveTransform(pts, matrix)

        # Compute the difference between original and modified position of points
        dist = round(cv2.norm(pts - transformed_pts, cv2.NORM_L2) / max, 10)  # sqrt((X1-X2)²+(Y1-Y2)²+...)

        # Totally an heuristic (geometry based):
        if dist < 0.20:
            return dist, transformed_pts
        else:
            return 1, transformed_pts 
Example #2
Source File: distance_ransac_orb.py    From douglas-quaid with GNU General Public License v3.0 6 votes vote down vote up
def filter_matrix_corners_affine(pts, max, matrix) -> (float, List):
        '''
        Compute the images of the image corners and of its center (i.e. the points you get when you apply the homography to those corners and center),
        and verify that they make sense, i.e. are they inside the image canvas (if you expect them to be)? Are they well separated from each other?
        Return a distance and a list of the transformed points
        '''

        # Make affine transformation
        add_row = np.array([[0, 0, 1]])
        affine_matrix = np.concatenate((matrix, add_row), axis=0)
        transformed_pts_affine = cv2.perspectiveTransform(pts, affine_matrix)

        # Affine distance
        tmp_dist_affine = round(cv2.norm(pts - transformed_pts_affine, cv2.NORM_L2) / max, 10)  # sqrt((X1-X2)²+(Y1-Y2)²+...)

        # Totally an heuristic (geometry based):
        if tmp_dist_affine < 0.20:
            return tmp_dist_affine, transformed_pts_affine
        else:
            return 1, transformed_pts_affine 
Example #3
Source File: DartsMapping.py    From opencv-steel-darts with GNU General Public License v3.0 6 votes vote down vote up
def getTransformedLocation(x_coord,y_coord, calData):
    try:
            # transform only the hit point with the saved transformation matrix
            # ToDo: idea for second camera -> transform complete image and overlap both images to find dart location?
            dart_loc_temp = np.array([[x_coord, y_coord]], dtype="float32")
            dart_loc_temp = np.array([dart_loc_temp])
            dart_loc = cv2.perspectiveTransform(dart_loc_temp, calData.transformation_matrix)
            new_dart_loc = tuple(dart_loc.reshape(1, -1)[0])

            return new_dart_loc

    #system not calibrated
    except AttributeError as err1:
        print err1
        return (-1, -1)

    except NameError as err2:
        #not calibrated error
        print err2
        return (-2, -2)


#Returns dartThrow (score, multiplier, angle, magnitude) based on x,y location 
Example #4
Source File: geometric.py    From ViolenceDetection with Apache License 2.0 6 votes vote down vote up
def _augment_keypoints(self, keypoints_on_images, random_state, parents, hooks):
        result = keypoints_on_images
        matrices, max_heights, max_widths = self._create_matrices(
            [kps.shape for kps in keypoints_on_images],
            random_state
        )

        for i, (M, max_height, max_width) in enumerate(zip(matrices, max_heights, max_widths)):
            keypoints_on_image = keypoints_on_images[i]
            kps_arr = keypoints_on_image.get_coords_array()
            #nb_channels = keypoints_on_image.shape[2] if len(keypoints_on_image.shape) >= 3 else None

            warped = cv2.perspectiveTransform(np.array([kps_arr], dtype=np.float32), M)
            warped = warped[0]
            warped_kps = ia.KeypointsOnImage.from_coords_array(
                warped,
                shape=(max_height, max_width) + keypoints_on_image.shape[2:]
            )
            if self.keep_size:
                warped_kps = warped_kps.on(keypoints_on_image.shape)
            result[i] = warped_kps

        return result 
Example #5
Source File: ar_main.py    From augmented-reality with MIT License 6 votes vote down vote up
def render(img, obj, projection, model, color=False):
    """
    Render a loaded obj model into the current video frame
    """
    vertices = obj.vertices
    scale_matrix = np.eye(3) * 3
    h, w = model.shape

    for face in obj.faces:
        face_vertices = face[0]
        points = np.array([vertices[vertex - 1] for vertex in face_vertices])
        points = np.dot(points, scale_matrix)
        # render model in the middle of the reference surface. To do so,
        # model points must be displaced
        points = np.array([[p[0] + w / 2, p[1] + h / 2, p[2]] for p in points])
        dst = cv2.perspectiveTransform(points.reshape(-1, 1, 3), projection)
        imgpts = np.int32(dst)
        if color is False:
            cv2.fillConvexPoly(img, imgpts, (137, 27, 211))
        else:
            color = hex_to_rgb(face[-1])
            color = color[::-1]  # reverse
            cv2.fillConvexPoly(img, imgpts, color)

    return img 
Example #6
Source File: auto.py    From airtest with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def _homography(src_pts,dst_pts,template_width,template_height,match_point=None):
    row,col,dim = dst_pts.shape
    if match_point:
        for i in range(row):
            match_point.append([int(dst_pts[i][0][0]),int(dst_pts[i][0][1])])
    M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
    pts = np.float32([[0, 0], [0, template_height - 1], 
                    [template_width - 1, template_height - 1], 
                    [template_width - 1, 0]]).reshape(-1, 1, 2)
    #找到一个变换矩阵,从查询图映射到检测图片
    dst = cv2.perspectiveTransform(pts, M) 
    return dst

#SIFT + Homography 
Example #7
Source File: screen_finder.py    From PyCV-time with MIT License 5 votes vote down vote up
def reverse_transform(self, cam_pts):
        pts = np.float32(cam_pts).reshape(-1,1,2)
        return cv2.perspectiveTransform(pts, self.cam2screen_matrix) 
Example #8
Source File: screen_finder.py    From PyCV-time with MIT License 5 votes vote down vote up
def reverse_transform(self, cam_pts):
        pts = np.float32(cam_pts).reshape(-1,1,2)
        return cv2.perspectiveTransform(pts, self.cam2screen_matrix) 
Example #9
Source File: plane_tracker.py    From PyCV-time with MIT License 5 votes vote down vote up
def track(self, frame):
        '''Returns a list of detected TrackedTarget objects'''
        self.frame_points, self.frame_descrs = self.detect_features(frame)
        if len(self.frame_points) < MIN_MATCH_COUNT:
            return []
        matches = self.matcher.knnMatch(self.frame_descrs, k = 2)
        matches = [m[0] for m in matches if len(m) == 2 and m[0].distance < m[1].distance * 0.75]
        if len(matches) < MIN_MATCH_COUNT:
            return []
        matches_by_id = [[] for _ in xrange(len(self.targets))]
        for m in matches:
            matches_by_id[m.imgIdx].append(m)
        tracked = []
        for imgIdx, matches in enumerate(matches_by_id):
            if len(matches) < MIN_MATCH_COUNT:
                continue
            target = self.targets[imgIdx]
            p0 = [target.keypoints[m.trainIdx].pt for m in matches]
            p1 = [self.frame_points[m.queryIdx].pt for m in matches]
            p0, p1 = np.float32((p0, p1))
            H, status = cv2.findHomography(p0, p1, cv2.RANSAC, 3.0)
            status = status.ravel() != 0
            if status.sum() < MIN_MATCH_COUNT:
                continue
            p0, p1 = p0[status], p1[status]

            x0, y0, x1, y1 = target.rect
            quad = np.float32([[x0, y0], [x1, y0], [x1, y1], [x0, y1]])
            quad = cv2.perspectiveTransform(quad.reshape(1, -1, 2), H).reshape(-1, 2)

            track = TrackedTarget(target=target, p0=p0, p1=p1, H=H, quad=quad)
            tracked.append(track)
        tracked.sort(key = lambda t: len(t.p0), reverse=True)
        return tracked 
Example #10
Source File: plane_tracker.py    From PyCV-time with MIT License 5 votes vote down vote up
def track(self, frame):
        '''Returns a list of detected TrackedTarget objects'''
        self.frame_points, self.frame_descrs = self.detect_features(frame)
        if len(self.frame_points) < MIN_MATCH_COUNT:
            return []
        matches = self.matcher.knnMatch(self.frame_descrs, k = 2)
        matches = [m[0] for m in matches if len(m) == 2 and m[0].distance < m[1].distance * 0.75]
        if len(matches) < MIN_MATCH_COUNT:
            return []
        matches_by_id = [[] for _ in xrange(len(self.targets))]
        for m in matches:
            matches_by_id[m.imgIdx].append(m)
        tracked = []
        for imgIdx, matches in enumerate(matches_by_id):
            if len(matches) < MIN_MATCH_COUNT:
                continue
            target = self.targets[imgIdx]
            p0 = [target.keypoints[m.trainIdx].pt for m in matches]
            p1 = [self.frame_points[m.queryIdx].pt for m in matches]
            p0, p1 = np.float32((p0, p1))
            H, status = cv2.findHomography(p0, p1, cv2.RANSAC, 3.0)
            status = status.ravel() != 0
            if status.sum() < MIN_MATCH_COUNT:
                continue
            p0, p1 = p0[status], p1[status]

            x0, y0, x1, y1 = target.rect
            quad = np.float32([[x0, y0], [x1, y0], [x1, y1], [x0, y1]])
            quad = cv2.perspectiveTransform(quad.reshape(1, -1, 2), H).reshape(-1, 2)

            track = TrackedTarget(target=target, p0=p0, p1=p1, H=H, quad=quad)
            tracked.append(track)
        tracked.sort(key = lambda t: len(t.p0), reverse=True)
        return tracked 
Example #11
Source File: inverse_perspective_map.py    From DVCNN_Lane_Detection with Apache License 2.0 5 votes vote down vote up
def perspective_point(self, pt1):
        """
        map point in top view image into front view image
        :param pt1:
        :return: pt2 [x, y]
        """
        pt1 = np.array([[pt1]], dtype=np.float32)

        top_ctrl_point = np.array(self.__top_view_ctrl_point).astype(dtype=np.float32)
        fv_ctrl_point = np.array(self.__front_view_ctrl_point).astype(dtype=np.float32)

        warp_transform = cv2.getPerspectiveTransform(src=top_ctrl_point, dst=fv_ctrl_point)
        pt_warp = cv2.perspectiveTransform(src=pt1, m=warp_transform)
        return pt_warp[0, 0, :] 
Example #12
Source File: inverse_perspective_map.py    From DVCNN_Lane_Detection with Apache License 2.0 5 votes vote down vote up
def inverse_perspective_point(self, pt1):
        """
        map point in front view image into top view image
        :param pt1:
        :return: pt2 [x, y]
        """
        fv_ctrl_point = np.array(self.__front_view_ctrl_point).astype(dtype=np.float32)
        top_ctrl_point = np.array(self.__top_view_ctrl_point).astype(dtype=np.float32)

        warp_transform = cv2.getPerspectiveTransform(src=fv_ctrl_point, dst=top_ctrl_point)
        pt_warp = cv2.perspectiveTransform(src=pt1, m=warp_transform)
        return pt_warp[0, 0, :] 
Example #13
Source File: math_utils.py    From text_renderer with MIT License 5 votes vote down vote up
def transform_pnts(self, pnts, M33):
        """
        :param pnts: 2D pnts, left-top, right-top, right-bottom, left-bottom
        :param M33: output from transform_image()
        :return: 2D pnts apply perspective transform
        """
        pnts = np.asarray(pnts, dtype=np.float32)
        pnts = np.array([pnts])
        dst_pnts = cv2.perspectiveTransform(pnts, M33)[0]

        return dst_pnts 
Example #14
Source File: utils.py    From VerifAI with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def ld2bbSample(sample, h):
    sample = np.float32([sample]).reshape(-1, 1, 2)
    con = cv2.perspectiveTransform(sample, h)
    return np.array(list(con[0][0])) 
Example #15
Source File: data_generation.py    From keras-ocr with MIT License 5 votes vote down vote up
def compute_transformed_contour(width, height, fontsize, M, contour, minarea=0.5):
    """Compute the permitted drawing contour
    on a padded canvas for an image of a given size.
    We assume the canvas is padded with one full image width
    and height on left and right, top and bottom respectively.

    Args:
        width: Width of image
        height: Height of image
        fontsize: Size of characters
        M: The transformation matrix
        contour: The contour to which we are limited inside
            the rectangle of size width / height
        minarea: The minimum area required for a character
            slot to qualify as being visible, expressed as
            a fraction of the untransformed fontsize x fontsize
            slot.
    """
    spacing = math.ceil(fontsize / 2)
    xslots = int(np.floor(width / spacing))
    yslots = int(np.floor(height / spacing))
    ys, xs = np.mgrid[:yslots, :xslots]
    basis = np.concatenate([xs[..., np.newaxis], ys[..., np.newaxis]], axis=-1).reshape((-1, 2))
    basis *= spacing
    slots_pretransform = np.concatenate(
        [(basis + offset)[:, np.newaxis, :]
         for offset in [[0, 0], [spacing, 0], [spacing, spacing], [0, spacing]]],
        axis=1)
    slots = cv2.perspectiveTransform(src=slots_pretransform.reshape((1, -1, 2)).astype('float32'),
                                     m=M)[0]
    inside = np.array([
        cv2.pointPolygonTest(contour=contour, pt=(x, y), measureDist=False) >= 0 for x, y in slots
    ]).reshape(-1, 4).all(axis=1)
    slots = slots.reshape(-1, 4, 2)
    areas = np.abs((slots[:, 0, 0] * slots[:, 1, 1] - slots[:, 0, 1] * slots[:, 1, 0]) +
                   (slots[:, 1, 0] * slots[:, 2, 1] - slots[:, 1, 1] * slots[:, 2, 0]) +
                   (slots[:, 2, 0] * slots[:, 3, 1] - slots[:, 2, 1] * slots[:, 3, 0]) +
                   (slots[:, 3, 0] * slots[:, 0, 1] - slots[:, 3, 1] * slots[:, 0, 0])) / 2
    slots_filtered = slots_pretransform[(areas > minarea * spacing * spacing) & inside]
    temporary_image = cv2.drawContours(image=np.zeros((height, width), dtype='uint8'),
                                       contours=slots_filtered,
                                       contourIdx=-1,
                                       color=255)
    temporary_image = cv2.dilate(src=temporary_image, kernel=np.ones((spacing, spacing)))
    newContours, _ = cv2.findContours(temporary_image,
                                      mode=cv2.RETR_TREE,
                                      method=cv2.CHAIN_APPROX_SIMPLE)
    x, y = slots_filtered[0][0]
    contour = newContours[next(
        index for index, contour in enumerate(newContours)
        if cv2.pointPolygonTest(contour=contour, pt=(x, y), measureDist=False) >= 0)][:, 0, :]
    return contour 
Example #16
Source File: sift.py    From airtest with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def find(search_file, image_file, threshold=None):
    '''
    param threshold are disabled in sift match.
    '''
    sch = _cv2open(search_file, 0)
    img = _cv2open(image_file, 0)

    kp_sch, des_sch = sift.detectAndCompute(sch, None)
    kp_img, des_img = sift.detectAndCompute(img, None)

    if len(kp_sch) < MIN_MATCH_COUNT or len(kp_img) < MIN_MATCH_COUNT:
        return None

    FLANN_INDEX_KDTREE = 0
    index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
    search_params = dict(checks = 50)

    flann = cv2.FlannBasedMatcher(index_params, search_params)

    matches = flann.knnMatch(des_sch, des_img, k=2)

    good = []
    for m,n in matches:
        if m.distance < 0.7*n.distance:
            good.append(m)

    if len(good) > MIN_MATCH_COUNT:
        sch_pts = np.float32([kp_sch[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
        img_pts = np.float32([kp_img[m.trainIdx].pt for m in good]).reshape(-1, 1, 2) 

        M, mask = cv2.findHomography(sch_pts, img_pts, cv2.RANSAC, 5.0)
        # matchesMask = mask.ravel().tolist()

        h, w = sch.shape
        pts = np.float32([ [0, 0], [0, h-1], [w-1, h-1], [w-1, 0] ]).reshape(-1, 1, 2)
        dst = cv2.perspectiveTransform(pts, M)
        lt, br = dst[0][0], dst[2][0]
        return map(int, (lt[0]+w/2, lt[1]+h/2))
    else:
        return None 
Example #17
Source File: image_SIFT.py    From airtest with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def _homography(src_pts,dst_pts,template_width,template_height,match_point=None):
    row,col,dim = dst_pts.shape
    if match_point:
        for i in range(row):
            match_point.append([int(dst_pts[i][0][0]),int(dst_pts[i][0][1])])
    M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
    pts = np.float32([[0, 0], [0, template_height - 1], 
                    [template_width - 1, template_height - 1], 
                    [template_width - 1, 0]]).reshape(-1, 1, 2)
    #找到一个变换矩阵,从查询图映射到检测图片
    dst = cv2.perspectiveTransform(pts, M) 
    return dst 
Example #18
Source File: transforms.py    From One_Shot_Face_Reenactment with MIT License 5 votes vote down vote up
def dealcurve(curve):
	cmean = curve.mean(0)
	angle = (random.random()*10)-5
	scale = ((random.random()-0.5)*0.1)+1.0
	m = cv2.getRotationMatrix2D((0,0),angle,scale)
	m = np.vstack([m,[0,0,1]])
	dmean = (np.random.rand(1,2)-0.5)*10
	curve = curve - cmean
	curve = cv2.perspectiveTransform(np.array([curve]),m)
	curve += cmean
	curve += dmean
	return curve[0] 
Example #19
Source File: pose_estimation.py    From OpenCV-3-x-with-Python-By-Example with MIT License 5 votes vote down vote up
def track_target(self, frame): 
        self.cur_keypoints, self.cur_descriptors = self.detect_features(frame) 

        if len(self.cur_keypoints) < self.min_matches: return []
        try: matches = self.feature_matcher.knnMatch(self.cur_descriptors, k=2)
        except Exception as e:
            print('Invalid target, please select another with features to extract')
            return []
        matches = [match[0] for match in matches if len(match) == 2 and match[0].distance < match[1].distance * 0.75] 
        if len(matches) < self.min_matches: return [] 
 
        matches_using_index = [[] for _ in range(len(self.tracking_targets))] 
        for match in matches: 
            matches_using_index[match.imgIdx].append(match) 
 
        tracked = [] 
        for image_index, matches in enumerate(matches_using_index): 
            if len(matches) < self.min_matches: continue 
 
            target = self.tracking_targets[image_index] 
            points_prev = [target.keypoints[m.trainIdx].pt for m in matches]
            points_cur = [self.cur_keypoints[m.queryIdx].pt for m in matches]
            points_prev, points_cur = np.float32((points_prev, points_cur))
            H, status = cv2.findHomography(points_prev, points_cur, cv2.RANSAC, 3.0) 
            status = status.ravel() != 0

            if status.sum() < self.min_matches: continue 
 
            points_prev, points_cur = points_prev[status], points_cur[status] 
 
            x_start, y_start, x_end, y_end = target.rect 
            quad = np.float32([[x_start, y_start], [x_end, y_start], [x_end, y_end], [x_start, y_end]])
            quad = cv2.perspectiveTransform(quad.reshape(1, -1, 2), H).reshape(-1, 2)
            track = self.tracked_target(target=target, points_prev=points_prev, points_cur=points_cur, H=H, quad=quad) 
            tracked.append(track) 
 
        tracked.sort(key = lambda x: len(x.points_prev), reverse=True) 
        return tracked 
 
    # Detect features in the selected ROIs and return the keypoints and descriptors 
Example #20
Source File: plane_tracker.py    From OpenCV-Python-Tutorial with MIT License 5 votes vote down vote up
def track(self, frame):
        '''Returns a list of detected TrackedTarget objects'''
        self.frame_points, frame_descrs = self.detect_features(frame)
        if len(self.frame_points) < MIN_MATCH_COUNT:
            return []
        matches = self.matcher.knnMatch(frame_descrs, k = 2)
        matches = [m[0] for m in matches if len(m) == 2 and m[0].distance < m[1].distance * 0.75]
        if len(matches) < MIN_MATCH_COUNT:
            return []
        matches_by_id = [[] for _ in xrange(len(self.targets))]
        for m in matches:
            matches_by_id[m.imgIdx].append(m)
        tracked = []
        for imgIdx, matches in enumerate(matches_by_id):
            if len(matches) < MIN_MATCH_COUNT:
                continue
            target = self.targets[imgIdx]
            p0 = [target.keypoints[m.trainIdx].pt for m in matches]
            p1 = [self.frame_points[m.queryIdx].pt for m in matches]
            p0, p1 = np.float32((p0, p1))
            H, status = cv2.findHomography(p0, p1, cv2.RANSAC, 3.0)
            status = status.ravel() != 0
            if status.sum() < MIN_MATCH_COUNT:
                continue
            p0, p1 = p0[status], p1[status]

            x0, y0, x1, y1 = target.rect
            quad = np.float32([[x0, y0], [x1, y0], [x1, y1], [x0, y1]])
            quad = cv2.perspectiveTransform(quad.reshape(1, -1, 2), H).reshape(-1, 2)

            track = TrackedTarget(target=target, p0=p0, p1=p1, H=H, quad=quad)
            tracked.append(track)
        tracked.sort(key = lambda t: len(t.p0), reverse=True)
        return tracked 
Example #21
Source File: homography.py    From specularity-removal with GNU General Public License v3.0 5 votes vote down vote up
def visualize_homo(img1, img2, kp1, kp2, matches, homo, mask):
    h, w, d = img1.shape
    pts = [[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]
    pts = np.array(pts, dtype=np.float32).reshape((-1, 1, 2))
    dst = cv.perspectiveTransform(pts, homo)

    img2 = cv.polylines(img2, [np.int32(dst)], True, [255, 0, 0], 3, 8)

    matches_mask = mask.ravel().tolist()
    draw_params = dict(matchesMask=matches_mask,
                       singlePointColor=None,
                       matchColor=(0, 255, 0),
                       flags=2)
    res = cv.drawMatches(img1, kp1, img2, kp2, matches, None, **draw_params)
    return res 
Example #22
Source File: rectangle_tracker.py    From python-opencv-rectangle-tracker with Apache License 2.0 4 votes vote down vote up
def persTransform(pts, H):
    """Transforms a list of points, `pts`,
    using the perspective transform `H`."""
    src = np.zeros((len(pts), 1, 2))
    src[:, 0] = pts
    dst = cv2.perspectiveTransform(src, H)
    return np.array(dst[:, 0, :], dtype='float32') 
Example #23
Source File: sift.py    From airtest with BSD 3-Clause "New" or "Revised" License 4 votes vote down vote up
def findall(search_file, image_file, threshold=None, maxcnt=0):
    sch = _cv2open(search_file, 0)
    img = _cv2open(image_file, 0)

    kp_sch, des_sch = sift.detectAndCompute(sch, None)
    kp_img, des_img = sift.detectAndCompute(img, None)

    if len(kp_sch) < MIN_MATCH_COUNT or len(kp_img) < MIN_MATCH_COUNT:
        return None

    FLANN_INDEX_KDTREE = 0
    index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
    search_params = dict(checks = 50)

    flann = cv2.FlannBasedMatcher(index_params, search_params)

    points = []
    while True:
        matches = flann.knnMatch(des_sch, des_img, k=2)
        good = []
        for m,n in matches:
            if m.distance < 0.7*n.distance:
                good.append(m)
        if len(good) < MIN_MATCH_COUNT:
            break

        if maxcnt and len(points) > maxcnt:
            break

        # print good
        sch_pts = np.float32([kp_sch[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
        img_pts = np.float32([kp_img[m.trainIdx].pt for m in good]).reshape(-1, 1, 2) 

        M, mask = cv2.findHomography(sch_pts, img_pts, cv2.RANSAC, 5.0)

        h, w = sch.shape
        pts = np.float32([ [0, 0], [0, h-1], [w-1, h-1], [w-1, 0] ]).reshape(-1, 1, 2)
        dst = cv2.perspectiveTransform(pts, M)
        lt, br = dst[0][0], dst[2][0]
        pt = map(int, (lt[0]+w/2, lt[1]+h/2))

        qindexes = []
        tindexes = []
        for m in good:
            qindexes.append(m.queryIdx)
            tindexes.append(m.trainIdx)
        def filter_index(indexes, arr):
            r = np.ndarray(0, np.float32)
            for i, item in enumerate(arr):
                if i not in qindexes:
                    # r.append(item)
                    r = np.append(r, item)
            return r
        # print type(des_sch[0][0])
        kp_sch = filter_index(qindexes, kp_sch)
        des_sch =filter_index(qindexes, des_sch)
        kp_img = filter_index(tindexes, kp_img)
        des_img = filter_index(tindexes, des_img)
        points.append(pt)

    return points 
Example #24
Source File: keypoint_base.py    From Airtest with Apache License 2.0 4 votes vote down vote up
def _many_good_pts(self, kp_sch, kp_src, good):
        """特征点匹配点对数目>=4个,可使用单矩阵映射,求出识别的目标区域."""
        sch_pts, img_pts = np.float32([kp_sch[m.queryIdx].pt for m in good]).reshape(
            -1, 1, 2), np.float32([kp_src[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
        # M是转化矩阵
        M, mask = self._find_homography(sch_pts, img_pts)
        matches_mask = mask.ravel().tolist()
        # 从good中间筛选出更精确的点(假设good中大部分点为正确的,由ratio=0.7保障)
        selected = [v for k, v in enumerate(good) if matches_mask[k]]

        # 针对所有的selected点再次计算出更精确的转化矩阵M来
        sch_pts, img_pts = np.float32([kp_sch[m.queryIdx].pt for m in selected]).reshape(
            -1, 1, 2), np.float32([kp_src[m.trainIdx].pt for m in selected]).reshape(-1, 1, 2)
        M, mask = self._find_homography(sch_pts, img_pts)
        # 计算四个角矩阵变换后的坐标,也就是在大图中的目标区域的顶点坐标:
        h, w = self.im_search.shape[:2]
        h_s, w_s = self.im_source.shape[:2]
        pts = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2)
        dst = cv2.perspectiveTransform(pts, M)

        # trans numpy arrary to python list: [(a, b), (a1, b1), ...]
        def cal_rect_pts(dst):
            return [tuple(npt[0]) for npt in dst.astype(int).tolist()]

        pypts = cal_rect_pts(dst)
        # 注意:虽然4个角点有可能越出source图边界,但是(根据精确化映射单映射矩阵M线性机制)中点不会越出边界
        lt, br = pypts[0], pypts[2]
        middle_point = int((lt[0] + br[0]) / 2), int((lt[1] + br[1]) / 2)
        # 考虑到算出的目标矩阵有可能是翻转的情况,必须进行一次处理,确保映射后的“左上角”在图片中也是左上角点:
        x_min, x_max = min(lt[0], br[0]), max(lt[0], br[0])
        y_min, y_max = min(lt[1], br[1]), max(lt[1], br[1])
        # 挑选出目标矩形区域可能会有越界情况,越界时直接将其置为边界:
        # 超出左边界取0,超出右边界取w_s-1,超出下边界取0,超出上边界取h_s-1
        # 当x_min小于0时,取0。  x_max小于0时,取0。
        x_min, x_max = int(max(x_min, 0)), int(max(x_max, 0))
        # 当x_min大于w_s时,取值w_s-1。  x_max大于w_s-1时,取w_s-1。
        x_min, x_max = int(min(x_min, w_s - 1)), int(min(x_max, w_s - 1))
        # 当y_min小于0时,取0。  y_max小于0时,取0。
        y_min, y_max = int(max(y_min, 0)), int(max(y_max, 0))
        # 当y_min大于h_s时,取值h_s-1。  y_max大于h_s-1时,取h_s-1。
        y_min, y_max = int(min(y_min, h_s - 1)), int(min(y_max, h_s - 1))
        # 目标区域的角点,按左上、左下、右下、右上点序:(x_min,y_min)(x_min,y_max)(x_max,y_max)(x_max,y_min)
        pts = np.float32([[x_min, y_min], [x_min, y_max], [
                         x_max, y_max], [x_max, y_min]]).reshape(-1, 1, 2)
        pypts = cal_rect_pts(pts)

        return middle_point, pypts, [x_min, x_max, y_min, y_max, w, h] 
Example #25
Source File: sift.py    From Airtest with Apache License 2.0 4 votes vote down vote up
def _many_good_pts(im_source, im_search, kp_sch, kp_src, good):
    """特征点匹配点对数目>=4个,可使用单矩阵映射,求出识别的目标区域."""
    sch_pts, img_pts = np.float32([kp_sch[m.queryIdx].pt for m in good]).reshape(
        -1, 1, 2), np.float32([kp_src[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
    # M是转化矩阵
    M, mask = _find_homography(sch_pts, img_pts)
    matches_mask = mask.ravel().tolist()
    # 从good中间筛选出更精确的点(假设good中大部分点为正确的,由ratio=0.7保障)
    selected = [v for k, v in enumerate(good) if matches_mask[k]]

    # 针对所有的selected点再次计算出更精确的转化矩阵M来
    sch_pts, img_pts = np.float32([kp_sch[m.queryIdx].pt for m in selected]).reshape(
        -1, 1, 2), np.float32([kp_src[m.trainIdx].pt for m in selected]).reshape(-1, 1, 2)
    M, mask = _find_homography(sch_pts, img_pts)
    # 计算四个角矩阵变换后的坐标,也就是在大图中的目标区域的顶点坐标:
    h, w = im_search.shape[:2]
    h_s, w_s = im_source.shape[:2]
    pts = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2)
    dst = cv2.perspectiveTransform(pts, M)

    # trans numpy arrary to python list: [(a, b), (a1, b1), ...]
    def cal_rect_pts(dst):
        return [tuple(npt[0]) for npt in dst.astype(int).tolist()]

    pypts = cal_rect_pts(dst)
    # 注意:虽然4个角点有可能越出source图边界,但是(根据精确化映射单映射矩阵M线性机制)中点不会越出边界
    lt, br = pypts[0], pypts[2]
    middle_point = int((lt[0] + br[0]) / 2), int((lt[1] + br[1]) / 2)
    # 考虑到算出的目标矩阵有可能是翻转的情况,必须进行一次处理,确保映射后的“左上角”在图片中也是左上角点:
    x_min, x_max = min(lt[0], br[0]), max(lt[0], br[0])
    y_min, y_max = min(lt[1], br[1]), max(lt[1], br[1])
    # 挑选出目标矩形区域可能会有越界情况,越界时直接将其置为边界:
    # 超出左边界取0,超出右边界取w_s-1,超出下边界取0,超出上边界取h_s-1
    # 当x_min小于0时,取0。  x_max小于0时,取0。
    x_min, x_max = int(max(x_min, 0)), int(max(x_max, 0))
    # 当x_min大于w_s时,取值w_s-1。  x_max大于w_s-1时,取w_s-1。
    x_min, x_max = int(min(x_min, w_s - 1)), int(min(x_max, w_s - 1))
    # 当y_min小于0时,取0。  y_max小于0时,取0。
    y_min, y_max = int(max(y_min, 0)), int(max(y_max, 0))
    # 当y_min大于h_s时,取值h_s-1。  y_max大于h_s-1时,取h_s-1。
    y_min, y_max = int(min(y_min, h_s - 1)), int(min(y_max, h_s - 1))
    # 目标区域的角点,按左上、左下、右下、右上点序:(x_min,y_min)(x_min,y_max)(x_max,y_max)(x_max,y_min)
    pts = np.float32([[x_min, y_min], [x_min, y_max], [
                     x_max, y_max], [x_max, y_min]]).reshape(-1, 1, 2)
    pypts = cal_rect_pts(pts)

    return middle_point, pypts, [x_min, x_max, y_min, y_max, w, h] 
Example #26
Source File: GetDart.py    From opencv-steel-darts with GNU General Public License v3.0 4 votes vote down vote up
def DartLocation(x_coord,y_coord):
    try:

            #start a fresh set of points
            points = []

            calFile = open('calibrationData.pkl', 'rb')
            calData = CalibrationData()
            calData = pickle.load(calFile)
            #load the data into the global variables
            global transformation_matrix
            transformation_matrix = calData.transformationMatrix
            global ring_radius
            ring_radius.append(calData.ring_radius[0])
            ring_radius.append(calData.ring_radius[1])
            ring_radius.append(calData.ring_radius[2])
            ring_radius.append(calData.ring_radius[3])
            ring_radius.append(calData.ring_radius[4])
            ring_radius.append(calData.ring_radius[5])  # append the 6 ring radii
            global center_dartboard
            center_dartboard = calData.center_dartboard

            #close the file once we are done reading the data
            calFile.close()
            #print "Raw dart location:"
            #print x_coord,y_coord

            # transform only the hit point with the saved transformation matrix
            dart_loc_temp = np.array([[x_coord, y_coord]], dtype="float32")
            dart_loc_temp = np.array([dart_loc_temp])
            dart_loc = cv2.perspectiveTransform(dart_loc_temp, transformation_matrix)
            new_dart_loc = tuple(dart_loc.reshape(1, -1)[0])

            return new_dart_loc

    #system not calibrated
    except AttributeError as err1:
        print err1
        return (-1, -1)

    except NameError as err2:
        #not calibrated error
        print err2
        return (-2, -2)


#Returns dartThrow (score, multiplier, angle, magnitude) based on x,y location 
Example #27
Source File: result_detail.py    From IkaLog with Apache License 2.0 4 votes vote down vote up
def auto_warp(self, context):
        # 画面のオフセットを自動検出して image を返す (AKAZE利用)

        frame = context['engine'].get('frame', None)
        if frame is None:
            return None
        keypoints, descs = self.get_keypoints(
            self.result_detail_normalizer(frame))

        matcher = cv2.BFMatcher(cv2.NORM_HAMMING)
        raw_matches = matcher.knnMatch(
            descs,
            trainDescriptors=self.ref_descriptors,
            k=2
        )
        p2, p1, kp_pairs = self.filter_matches(
            keypoints,
            self.ref_keypoints,
            raw_matches,
        )

        if len(p1) >= 4:
            H, status = cv2.findHomography(p1, p2, cv2.RANSAC, 5.0)
            print('%d / %d  inliers/matched' % (np.sum(status), len(status)))
        else:
            H, status = None, None
            print('%d matches found, not enough for homography estimation' % len(p1))
            raise

        w = 1280
        h = 720
        corners = np.float32([[0, 0], [w, 0], [w, h], [0, h]])
        pts2 = np.float32([[0, 0], [w, 0], [w, h], [0, h]])
        pts1 = np.float32(cv2.perspectiveTransform(
            corners.reshape(1, -1, 2), H).reshape(-1, 2) + (0, 0))
        M = cv2.getPerspectiveTransform(pts1, pts2)

        # out = cv2.drawKeypoints(img2, keypoints1, None)
        new_frame = cv2.warpPerspective(frame, M, (w, h))

        # 変形した画像がマスクと一致するか?
        matched = ImageUtils.match_with_mask(
            new_frame, self.winlose_gray, 0.997, 0.22)
        if matched:
            return new_frame

        IkaUtils.dprint('%s: auto_warp() function broke the image.' % self)
        return None 
Example #28
Source File: getPMatrix.py    From AR-BXT-AR4Python with GNU Lesser General Public License v3.0 4 votes vote down vote up
def getMatches(self, sceneImage):
        """
        sceneImage: 场景图片的array形式

        return dst: 反馈标记物关键点

        """
        # Initiate SIFT detector
        sift = cv2.xfeatures2d.SIFT_create()

        # find the keypoints and descriptors with SIFT
        kp1, des1 = sift.detectAndCompute(self.MarkImage[:,:,0],None)
        kp2, des2 = sift.detectAndCompute(sceneImage[:,:,0],None)

        # create BFMatcher object
        FLANN_INDEX_KDTREE = 0
        index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
        search_params = dict(checks = 50)

        flann = cv2.FlannBasedMatcher(index_params, search_params)

        # Match descriptors.
        matches = flann.knnMatch(des1,des2,k=2)

        # Sort them in the order of their distance.
        good = []
        for m,n in matches:
            if m.distance < 0.7*n.distance:
                good.append(m)
        if len(good) < self.MIN_MATCH_COUNT:
            return None

        src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
        dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)

        M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)
        matchesMask = mask.ravel().tolist()

        h,w = self.MarkImage.shape[:2]
        pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
        dst = cv2.perspectiveTransform(pts,M)

        draw_params = dict(matchColor = (0,255,0), # draw matches in green color
                           singlePointColor = None,
                           matchesMask = matchesMask, # draw only inliers
                           flags = 2)

        self.SceneImage = sceneImage
        self.DrawParams = draw_params
        self.KP1 = kp1
        self.KP2 = kp2
        self.GoodMatches = good
        return dst 
Example #29
Source File: getPMatrix.py    From AR-BXT-AR4Python with GNU Lesser General Public License v3.0 4 votes vote down vote up
def getMatches(self, sceneImage):
        """
        sceneImage: 场景图片的array形式

        return dst: 反馈标记物关键点

        """
        # Initiate SIFT detector
        sift = cv2.xfeatures2d.SIFT_create()

        # find the keypoints and descriptors with SIFT
        kp1, des1 = sift.detectAndCompute(self.MarkImage[:,:,0],None)
        kp2, des2 = sift.detectAndCompute(sceneImage[:,:,0],None)

        # create BFMatcher object
        FLANN_INDEX_KDTREE = 0
        index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
        search_params = dict(checks = 50)

        flann = cv2.FlannBasedMatcher(index_params, search_params)

        # Match descriptors.
        matches = flann.knnMatch(des1,des2,k=2)

        # Sort them in the order of their distance.
        good = []
        for m,n in matches:
            if m.distance < 0.7*n.distance:
                good.append(m)
        if len(good) < self.MIN_MATCH_COUNT:
            return None

        src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
        dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)

        M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)
        matchesMask = mask.ravel().tolist()

        h,w = self.MarkImage.shape[:2]
        pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
        dst = cv2.perspectiveTransform(pts,M)

        draw_params = dict(matchColor = (0,255,0), # draw matches in green color
                           singlePointColor = None,
                           matchesMask = matchesMask, # draw only inliers
                           flags = 2)

        self.SceneImage = sceneImage
        self.DrawParams = draw_params
        self.KP1 = kp1
        self.KP2 = kp2
        self.GoodMatches = good
        return dst 
Example #30
Source File: YuHunModule.py    From yysScript with Apache License 2.0 4 votes vote down vote up
def GetLocation(target, kp2, des2):
    """
    获取目标图像在截图中的位置
    :param target:
    :param screenShot:
    :return: 返回坐标(x,y) 与opencv坐标系对应
    """
    MIN_MATCH_COUNT = 10
    img1 = target  # cv2.cvtColor(target,cv2.COLOR_BGR2GRAY)# 查询图片
    # img2 = screenShot
    # img2 = cv2.cvtColor(screenShot, cv2.COLOR_BGR2GRAY)  # 训练图片
    # img2 = cv2.resize(img2, dsize=None, fx=0.5, fy=0.5, interpolation=cv2.INTER_NEAREST)
    # 用SIFT找到关键点和描述符

    kp1, des1 = SIFT.detectAndCompute(img1, None)

    FLANN_INDEX_KDTREE = 0
    index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=4)
    search_params = dict(checks=50)

    flann = cv2.FlannBasedMatcher(index_params, search_params)
    matches = flann.knnMatch(des1, des2, k=2)
    good = []
    for m, n in matches:
        if m.distance < 0.7 * n.distance:
            good.append(m)
    if len(good) > MIN_MATCH_COUNT:
        src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
        dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
        M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
        matchesMask = mask.ravel().tolist()
        h, w = img1.shape
        pts = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2)
        if M is not None:
            dst = cv2.perspectiveTransform(pts, M)
            arr = np.int32(dst)  #
            midPosArr = arr[0] + (arr[2] - arr[0]) // 2
            midPos = (midPosArr[0][0], midPosArr[0][1])
            # show=cv2.circle(img2,midPos,30,(255,255,255),thickness=5)
            # cv2.imshow('s',show)
            # cv2.waitKey()
            # cv2.destroyAllWindows()
            return midPos
        else:
            return None
    else:
        return None