Python cv2.MORPH_TOPHAT Examples
The following are 4
code examples of cv2.MORPH_TOPHAT().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: Preprocess.py From ALPR-Indonesia with MIT License | 7 votes |
def maximizeContrast(imgGrayscale): height, width = imgGrayscale.shape imgTopHat = np.zeros((height, width, 1), np.uint8) imgBlackHat = np.zeros((height, width, 1), np.uint8) structuringElement = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) imgTopHat = cv2.morphologyEx(imgGrayscale, cv2.MORPH_TOPHAT, structuringElement) imgBlackHat = cv2.morphologyEx(imgGrayscale, cv2.MORPH_BLACKHAT, structuringElement) imgGrayscalePlusTopHat = cv2.add(imgGrayscale, imgTopHat) imgGrayscalePlusTopHatMinusBlackHat = cv2.subtract(imgGrayscalePlusTopHat, imgBlackHat) return imgGrayscalePlusTopHatMinusBlackHat # end function
Example #2
Source File: preprocessing.py From minian with GNU General Public License v3.0 | 5 votes |
def remove_background_perframe(fm, method, wnd, selem): if method == 'uniform': return fm - uniform_filter(fm, wnd) elif method == 'tophat': return cv2.morphologyEx(fm, cv2.MORPH_TOPHAT, selem)
Example #3
Source File: FilterCvQtContainer.py From bjtu_BinocularCameraRecord with MIT License | 4 votes |
def process(self, cv_before, name): k = self.k[0] kernel = np.ones((k, k), np.uint8) if name == 'Invert': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2GRAY) cv_after = cv2.bitwise_not(cv_before) elif name == 'Histogram Equalization': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2GRAY) clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) cv_after = clahe.apply(cv_before) elif name == 'Threshold': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2GRAY) ret, cv_after = cv2.threshold( cv_before, k, 255, cv2.THRESH_BINARY) elif name == 'Gaussian Threshold': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2GRAY) cv_after = cv2.adaptiveThreshold(cv_before, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, k, 2) elif name == 'HSV': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2HSV) lower_color = np.array([k - 35, 0, 0]) upper_color = np.array([k + 35, 255, 255]) cv_after = cv2.inRange(cv_before, lower_color, upper_color) elif name == 'LAB': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2LAB) L, a, b = cv2.split(cv_before) ret, cv_after = cv2.threshold(L, k, 255, cv2.THRESH_BINARY) elif name == 'Erosion': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2GRAY) cv_after = cv2.erode(cv_before, kernel, iterations=1) elif name == 'Dilation': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2GRAY) cv_after = cv2.dilate(cv_before, kernel, iterations=1) elif name == 'Opening': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2GRAY) cv_after = cv2.morphologyEx( cv_before, cv2.MORPH_OPEN, kernel) elif name == 'Closing': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2GRAY) cv_after = cv2.morphologyEx( cv_before, cv2.MORPH_CLOSE, kernel) elif name == 'Top Hat': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2GRAY) cv_after = cv2.morphologyEx( cv_before, cv2.MORPH_TOPHAT, kernel) elif name == 'Black Hat': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2GRAY) cv_after = cv2.morphologyEx( cv_before, cv2.MORPH_BLACKHAT, kernel) elif name == 'Canny': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2GRAY) cv_after = cv2.Canny(cv_before, 100, k) elif name == 'Laplacian': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2GRAY) cv_after = cv2.Laplacian(cv_before, cv2.CV_64F) cv_after = np.absolute(cv_after) cv_after = np.uint8(cv_after) return cv_after
Example #4
Source File: lane_tracker.py From lane_tracker with GNU General Public License v3.0 | 4 votes |
def filter_lane_points(self, img, filter_type='bilateral', ksize_r=25, C_r=8, ksize_b=35, C_b=5, mask_noise=False, ksize_noise=65, C_noise=10, noise_thresh=135): ''' Filter an image to isolate lane lines and return a binary version. All image color space conversion, thresholding, filtering and morphing happens inside this method. It takes an RGB color image as input and returns a binary filtered version. ''' # Define structuring elements for cv2 functions strel_lab_b = cv2.getStructuringElement(shape=cv2.MORPH_ELLIPSE, ksize=(55,55)) strel_rgb_r = cv2.getStructuringElement(shape=cv2.MORPH_ELLIPSE, ksize=(29,29)) strel_open = cv2.getStructuringElement(shape=cv2.MORPH_ELLIPSE, ksize=(5,5)) # Extract RGB R-channel and LAB B-channel rgb_r_channel = img[:,:,0] lab_b_channel = (cv2.cvtColor(img, cv2.COLOR_RGB2LAB))[:,:,2] # Apply tophat morphology rgb_r_tophat = cv2.morphologyEx(rgb_r_channel, cv2.MORPH_TOPHAT, strel_rgb_r, iterations=1) lab_b_tophat = cv2.morphologyEx(lab_b_channel, cv2.MORPH_TOPHAT, strel_lab_b, iterations=1) if filter_type == 'bilateral': # Apply bilateral adaptive color thresholding rgb_r_thresh = bilateral_adaptive_threshold(rgb_r_tophat, ksize=ksize_r, C=C_r) lab_b_thresh = bilateral_adaptive_threshold(lab_b_tophat, ksize=ksize_b, C=C_b) elif filter_type == 'neighborhood': rgb_r_thresh = cv2.adaptiveThreshold(rgb_r_channel, 255, adaptiveMethod=cv2.ADAPTIVE_THRESH_MEAN_C, thresholdType=cv2.THRESH_BINARY, blockSize=ksize_r, C=-C_r) lab_b_thresh = cv2.adaptiveThreshold(lab_b_channel, 255, adaptiveMethod=cv2.ADAPTIVE_THRESH_MEAN_C, thresholdType=cv2.THRESH_BINARY, blockSize=ksize_b, C=-C_b) else: raise ValueError("Unexpected filter mode. Expected modes are 'bilateral' or 'neighborhood'.") if mask_noise: # Merge both color channels and the noise mask # Create a mask to filter out noise such as trees and other greenery based on the LAB B-channel noise_mask_part1 = cv2.inRange(lab_b_channel, noise_thresh, 255) # This catches the noise, but unfortunately also the yellow line, therefore... noise_mask_part2 = bilateral_adaptive_threshold(lab_b_channel, ksize=ksize_noise, C=C_noise) # ...this brings the yellow line back... noise_bool = np.logical_or(np.logical_not(noise_mask_part1), noise_mask_part2) # ...once we combine the two. noise_mask = np.zeros_like(rgb_r_channel, dtype=np.uint8) noise_mask[noise_bool] = 255 merged_bool = np.logical_and(np.logical_or(rgb_r_thresh, lab_b_thresh), noise_mask) merged = np.zeros_like(rgb_r_channel, dtype=np.uint8) merged[merged_bool] = 255 else: # Only merge the two color channels merged_bool = np.logical_or(rgb_r_thresh, lab_b_thresh) merged = np.zeros_like(rgb_r_channel, dtype=np.uint8) merged[merged_bool] = 255 # Apply open morphology opened = cv2.morphologyEx(merged, cv2.MORPH_OPEN, strel_open, iterations=1) return opened