Python cv2.COLOR_RGB2LAB Examples
The following are 22
code examples of cv2.COLOR_RGB2LAB().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: luminosity_threshold_tissue_locator.py From StainTools with MIT License | 6 votes |
def get_tissue_mask(I, luminosity_threshold=0.8): """ Get a binary mask where true denotes pixels with a luminosity less than the specified threshold. Typically we use to identify tissue in the image and exclude the bright white background. :param I: RGB uint 8 image. :param luminosity_threshold: Luminosity threshold. :return: Binary mask. """ assert is_uint8_image(I), "Image should be RGB uint8." I_LAB = cv.cvtColor(I, cv.COLOR_RGB2LAB) L = I_LAB[:, :, 0] / 255.0 # Convert to range [0,1]. mask = L < luminosity_threshold # Check it's not empty if mask.sum() == 0: raise TissueMaskException("Empty tissue mask computed") return mask
Example #2
Source File: reinhard_color_normalizer.py From StainTools with MIT License | 6 votes |
def lab_split(I): """ Convert from RGB uint8 to LAB and split into channels. :param I: Image RGB uint8. :return: """ assert is_uint8_image(I), "Should be a RGB uint8 image" I = cv.cvtColor(I, cv.COLOR_RGB2LAB) I_float = I.astype(np.float32) I1, I2, I3 = cv.split(I_float) I1 /= 2.55 # should now be in range [0,100] I2 -= 128.0 # should now be in range [-127,127] I3 -= 128.0 # should now be in range [-127,127] return I1, I2, I3
Example #3
Source File: luminosity_standardizer.py From StainTools with MIT License | 6 votes |
def standardize(I, percentile=95): """ Transform image I to standard brightness. Modifies the luminosity channel such that a fixed percentile is saturated. :param I: Image uint8 RGB. :param percentile: Percentile for luminosity saturation. At least (100 - percentile)% of pixels should be fully luminous (white). :return: Image uint8 RGB with standardized brightness. """ assert is_uint8_image(I), "Image should be RGB uint8." I_LAB = cv.cvtColor(I, cv.COLOR_RGB2LAB) L_float = I_LAB[:, :, 0].astype(float) p = np.percentile(L_float, percentile) I_LAB[:, :, 0] = np.clip(255 * L_float / p, 0, 255).astype(np.uint8) I = cv.cvtColor(I_LAB, cv.COLOR_LAB2RGB) return I
Example #4
Source File: omnirobot_simulator_server.py From robotics-rl-srl with MIT License | 6 votes |
def renderEnvLuminosityNoise(self, origin_image, noise_var=0.1, in_RGB=False, out_RGB=False): """ render the different environment luminosity """ # variate luminosity and color origin_image_LAB = cv2.cvtColor( origin_image, cv2.COLOR_RGB2LAB if in_RGB else cv2.COLOR_BGR2LAB, cv2.CV_32F) origin_image_LAB[:, :, 0] = origin_image_LAB[:, :, 0] * (np.random.randn() * noise_var + 1.0) origin_image_LAB[:, :, 1] = origin_image_LAB[:, :, 1] * (np.random.randn() * noise_var + 1.0) origin_image_LAB[:, :, 2] = origin_image_LAB[:, :, 2] * (np.random.randn() * noise_var + 1.0) out_image = cv2.cvtColor( origin_image_LAB, cv2.COLOR_LAB2RGB if out_RGB else cv2.COLOR_LAB2BGR, cv2.CV_8UC3) return out_image
Example #5
Source File: train101_9ch_fold.py From SpaceNet_Off_Nadir_Solutions with Apache License 2.0 | 5 votes |
def clahe(img, clipLimit=2.0, tileGridSize=(5,5)): img_yuv = cv2.cvtColor(img, cv2.COLOR_RGB2LAB) clahe = cv2.createCLAHE(clipLimit=clipLimit, tileGridSize=tileGridSize) img_yuv[:, :, 0] = clahe.apply(img_yuv[:, :, 0]) img_output = cv2.cvtColor(img_yuv, cv2.COLOR_LAB2RGB) return img_output
Example #6
Source File: functional.py From albumentations with MIT License | 5 votes |
def clahe(img, clip_limit=2.0, tile_grid_size=(8, 8)): if img.dtype != np.uint8: raise TypeError("clahe supports only uint8 inputs") clahe_mat = cv2.createCLAHE(clipLimit=clip_limit, tileGridSize=tile_grid_size) if len(img.shape) == 2 or img.shape[2] == 1: img = clahe_mat.apply(img) else: img = cv2.cvtColor(img, cv2.COLOR_RGB2LAB) img[:, :, 0] = clahe_mat.apply(img[:, :, 0]) img = cv2.cvtColor(img, cv2.COLOR_LAB2RGB) return img
Example #7
Source File: functional.py From dsb2018_topcoders with MIT License | 5 votes |
def clahe(img, clipLimit=2.0, tileGridSize=(8,8)): img_yuv = cv2.cvtColor(img, cv2.COLOR_RGB2LAB) clahe = cv2.createCLAHE(clipLimit=clipLimit, tileGridSize=tileGridSize) img_yuv[:, :, 0] = clahe.apply(img_yuv[:, :, 0]) img_output = cv2.cvtColor(img_yuv, cv2.COLOR_LAB2RGB) return img_output
Example #8
Source File: functional.py From dsb2018_topcoders with MIT License | 5 votes |
def add_channel(img): lab = cv2.cvtColor(img, cv2.COLOR_RGB2LAB) clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(21, 21)) lab = clahe.apply(lab[:, :, 0]) if lab.mean() > 127: lab = 255 - lab return np.dstack((img, lab))
Example #9
Source File: functional.py From dsb2018_topcoders with MIT License | 5 votes |
def clahe(img, clipLimit=2.0, tileGridSize=(8,8)): img_yuv = cv2.cvtColor(img, cv2.COLOR_RGB2LAB) clahe = cv2.createCLAHE(clipLimit=clipLimit, tileGridSize=tileGridSize) img_yuv[:, :, 0] = clahe.apply(img_yuv[:, :, 0]) img_output = cv2.cvtColor(img_yuv, cv2.COLOR_LAB2RGB) return img_output
Example #10
Source File: functional.py From dsb2018_topcoders with MIT License | 5 votes |
def add_channel(img): lab = cv2.cvtColor(img, cv2.COLOR_RGB2LAB) clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(21, 21)) lab = clahe.apply(lab[:, :, 0]) if lab.mean() > 127: lab = 255 - lab return np.dstack((img, lab))
Example #11
Source File: functional.py From dsb2018_topcoders with MIT License | 5 votes |
def clahe(img, clipLimit=2.0, tileGridSize=(8,8)): img_yuv = cv2.cvtColor(img, cv2.COLOR_RGB2LAB) clahe = cv2.createCLAHE(clipLimit=clipLimit, tileGridSize=tileGridSize) img_yuv[:, :, 0] = clahe.apply(img_yuv[:, :, 0]) img_output = cv2.cvtColor(img_yuv, cv2.COLOR_LAB2RGB) return img_output
Example #12
Source File: MR.py From mr_saliency with GNU General Public License v2.0 | 5 votes |
def __MR_readimg(self,img): if isinstance(img,str): # a image path img = cv2.imread(img, _cv2_LOAD_IMAGE_COLOR) img = cv2.cvtColor(img,cv2.COLOR_RGB2LAB).astype(float)/255 h = 100 w = int(float(h)/float(img.shape[0])*float(img.shape[1])) return cv2.resize(img,(w,h))
Example #13
Source File: train92_9ch_fold.py From SpaceNet_Off_Nadir_Solutions with Apache License 2.0 | 5 votes |
def clahe(img, clipLimit=2.0, tileGridSize=(5,5)): img_yuv = cv2.cvtColor(img, cv2.COLOR_RGB2LAB) clahe = cv2.createCLAHE(clipLimit=clipLimit, tileGridSize=tileGridSize) img_yuv[:, :, 0] = clahe.apply(img_yuv[:, :, 0]) img_output = cv2.cvtColor(img_yuv, cv2.COLOR_LAB2RGB) return img_output
Example #14
Source File: train50_9ch_fold.py From SpaceNet_Off_Nadir_Solutions with Apache License 2.0 | 5 votes |
def clahe(img, clipLimit=2.0, tileGridSize=(5,5)): img_yuv = cv2.cvtColor(img, cv2.COLOR_RGB2LAB) clahe = cv2.createCLAHE(clipLimit=clipLimit, tileGridSize=tileGridSize) img_yuv[:, :, 0] = clahe.apply(img_yuv[:, :, 0]) img_output = cv2.cvtColor(img_yuv, cv2.COLOR_LAB2RGB) return img_output
Example #15
Source File: train154_9ch_fold.py From SpaceNet_Off_Nadir_Solutions with Apache License 2.0 | 5 votes |
def clahe(img, clipLimit=2.0, tileGridSize=(5,5)): img_yuv = cv2.cvtColor(img, cv2.COLOR_RGB2LAB) clahe = cv2.createCLAHE(clipLimit=clipLimit, tileGridSize=tileGridSize) img_yuv[:, :, 0] = clahe.apply(img_yuv[:, :, 0]) img_output = cv2.cvtColor(img_yuv, cv2.COLOR_LAB2RGB) return img_output
Example #16
Source File: image.py From GuidedFilter with MIT License | 5 votes |
def rgb2Lab(img): img_rgb = rgb(img) Lab = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2LAB) return Lab ## Lab to RGB.
Example #17
Source File: image.py From ColorHistogram with MIT License | 5 votes |
def rgb2Lab(img): img_rgb = rgb(img) Lab = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2LAB) return Lab ## Lab to RGB.
Example #18
Source File: FilterCvQtContainer.py From bjtu_BinocularCameraRecord with MIT License | 4 votes |
def process(self, cv_before, name): k = self.k[0] kernel = np.ones((k, k), np.uint8) if name == 'Invert': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2GRAY) cv_after = cv2.bitwise_not(cv_before) elif name == 'Histogram Equalization': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2GRAY) clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) cv_after = clahe.apply(cv_before) elif name == 'Threshold': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2GRAY) ret, cv_after = cv2.threshold( cv_before, k, 255, cv2.THRESH_BINARY) elif name == 'Gaussian Threshold': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2GRAY) cv_after = cv2.adaptiveThreshold(cv_before, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, k, 2) elif name == 'HSV': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2HSV) lower_color = np.array([k - 35, 0, 0]) upper_color = np.array([k + 35, 255, 255]) cv_after = cv2.inRange(cv_before, lower_color, upper_color) elif name == 'LAB': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2LAB) L, a, b = cv2.split(cv_before) ret, cv_after = cv2.threshold(L, k, 255, cv2.THRESH_BINARY) elif name == 'Erosion': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2GRAY) cv_after = cv2.erode(cv_before, kernel, iterations=1) elif name == 'Dilation': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2GRAY) cv_after = cv2.dilate(cv_before, kernel, iterations=1) elif name == 'Opening': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2GRAY) cv_after = cv2.morphologyEx( cv_before, cv2.MORPH_OPEN, kernel) elif name == 'Closing': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2GRAY) cv_after = cv2.morphologyEx( cv_before, cv2.MORPH_CLOSE, kernel) elif name == 'Top Hat': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2GRAY) cv_after = cv2.morphologyEx( cv_before, cv2.MORPH_TOPHAT, kernel) elif name == 'Black Hat': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2GRAY) cv_after = cv2.morphologyEx( cv_before, cv2.MORPH_BLACKHAT, kernel) elif name == 'Canny': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2GRAY) cv_after = cv2.Canny(cv_before, 100, k) elif name == 'Laplacian': cv_before = cv2.cvtColor(cv_before, cv2.COLOR_RGB2GRAY) cv_after = cv2.Laplacian(cv_before, cv2.CV_64F) cv_after = np.absolute(cv_after) cv_after = np.uint8(cv_after) return cv_after
Example #19
Source File: arm_resnet.py From craves.ai with GNU General Public License v3.0 | 4 votes |
def __getitem__(self, index): if self.is_train: ids = self.train[index] else: ids = self.valid[index] images = self.dataset.get_image([self.cam_name], [ids]) img_path = images[0] img = load_image(img_path) #CxHxW target = self.load_angles(img_path) original_size = np.array((img.shape[2], img.shape[1])) segmasks = self.dataset.get_seg([self.cam_name], [ids]) segmask = io.imread(segmasks[0]) binary_arm = vdb.get_obj_mask(segmask, self.color) bb = vdb.seg2bb(binary_arm) x0, x1, y0, y1 = bb c = np.array([(x0+x1), (y0+y1)])/2 #s = np.sqrt((y1-y0)*(x1-x0))/120.0 s = np.sqrt((y1-y0)*(x1-x0))/60.0 r = 0 #s = max(x1-x0, y1-y0)/125 if self.is_train: c = c + np.array([-30 + 60*random.random() ,-30 + 60*random.random()]) #random move s *= 0.6*(1+2*random.random())#random scale rf = 15 r = -rf + 2*random.random()*rf#random rotation #r = torch.randn(1).mul_(rf).clamp(-2*rf, 2*rf)[0] if random.random() <= 0.6 else 0 # Color im_rgb = im_to_numpy(img) im_lab = cv2.cvtColor(im_rgb, cv2.COLOR_RGB2LAB) im_lab[:,:,0] = np.clip(im_lab[:,:,0]*(random.uniform(0.3, 1.3)), 0, 255) img = im_to_torch(cv2.cvtColor(im_lab, cv2.COLOR_LAB2RGB)) if random.random() <= 0.5: img = torch.from_numpy(fliplr(img.numpy())).float() inp = crop(img, c, s, [self.inp_res, self.inp_res], rot=r) inp = color_normalize(inp, self.mean, self.std) return inp, target
Example #20
Source File: test_color.py From imgaug with MIT License | 4 votes |
def test_every_colorspace(self): def _image_to_channel(image, cspace): if cspace == iaa.CSPACE_YCrCb: image_cvt = cv2.cvtColor(image, cv2.COLOR_RGB2YCR_CB) return image_cvt[:, :, 0:0+1] elif cspace == iaa.CSPACE_HSV: image_cvt = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) return image_cvt[:, :, 2:2+1] elif cspace == iaa.CSPACE_HLS: image_cvt = cv2.cvtColor(image, cv2.COLOR_RGB2HLS) return image_cvt[:, :, 1:1+1] elif cspace == iaa.CSPACE_Lab: if hasattr(cv2, "COLOR_RGB2Lab"): image_cvt = cv2.cvtColor(image, cv2.COLOR_RGB2Lab) else: image_cvt = cv2.cvtColor(image, cv2.COLOR_RGB2LAB) return image_cvt[:, :, 0:0+1] elif cspace == iaa.CSPACE_Luv: if hasattr(cv2, "COLOR_RGB2Luv"): image_cvt = cv2.cvtColor(image, cv2.COLOR_RGB2Luv) else: image_cvt = cv2.cvtColor(image, cv2.COLOR_RGB2LUV) return image_cvt[:, :, 0:0+1] else: assert cspace == iaa.CSPACE_YUV image_cvt = cv2.cvtColor(image, cv2.COLOR_RGB2YUV) return image_cvt[:, :, 0:0+1] # Max differences between input image and image after augmentation # when no child augmenter is used (for the given example image below). # For some colorspaces the conversion to input colorspace isn't # perfect. # Values were manually checked. max_diff_expected = { iaa.CSPACE_YCrCb: 1, iaa.CSPACE_HSV: 0, iaa.CSPACE_HLS: 0, iaa.CSPACE_Lab: 2, iaa.CSPACE_Luv: 4, iaa.CSPACE_YUV: 1 } image = np.arange(6*6*3).astype(np.uint8).reshape((6, 6, 3)) for cspace in self.valid_colorspaces: with self.subTest(colorspace=cspace): child = _BatchCapturingDummyAugmenter() aug = iaa.WithBrightnessChannels( children=child, to_colorspace=cspace) image_aug = aug(image=image) expected = _image_to_channel(image, cspace) diff = np.abs( image.astype(np.int32) - image_aug.astype(np.int32)) assert np.all(diff <= max_diff_expected[cspace]) assert np.array_equal(child.last_batch.images[0], expected)
Example #21
Source File: lane_tracker.py From lane_tracker with GNU General Public License v3.0 | 4 votes |
def filter_lane_points(self, img, filter_type='bilateral', ksize_r=25, C_r=8, ksize_b=35, C_b=5, mask_noise=False, ksize_noise=65, C_noise=10, noise_thresh=135): ''' Filter an image to isolate lane lines and return a binary version. All image color space conversion, thresholding, filtering and morphing happens inside this method. It takes an RGB color image as input and returns a binary filtered version. ''' # Define structuring elements for cv2 functions strel_lab_b = cv2.getStructuringElement(shape=cv2.MORPH_ELLIPSE, ksize=(55,55)) strel_rgb_r = cv2.getStructuringElement(shape=cv2.MORPH_ELLIPSE, ksize=(29,29)) strel_open = cv2.getStructuringElement(shape=cv2.MORPH_ELLIPSE, ksize=(5,5)) # Extract RGB R-channel and LAB B-channel rgb_r_channel = img[:,:,0] lab_b_channel = (cv2.cvtColor(img, cv2.COLOR_RGB2LAB))[:,:,2] # Apply tophat morphology rgb_r_tophat = cv2.morphologyEx(rgb_r_channel, cv2.MORPH_TOPHAT, strel_rgb_r, iterations=1) lab_b_tophat = cv2.morphologyEx(lab_b_channel, cv2.MORPH_TOPHAT, strel_lab_b, iterations=1) if filter_type == 'bilateral': # Apply bilateral adaptive color thresholding rgb_r_thresh = bilateral_adaptive_threshold(rgb_r_tophat, ksize=ksize_r, C=C_r) lab_b_thresh = bilateral_adaptive_threshold(lab_b_tophat, ksize=ksize_b, C=C_b) elif filter_type == 'neighborhood': rgb_r_thresh = cv2.adaptiveThreshold(rgb_r_channel, 255, adaptiveMethod=cv2.ADAPTIVE_THRESH_MEAN_C, thresholdType=cv2.THRESH_BINARY, blockSize=ksize_r, C=-C_r) lab_b_thresh = cv2.adaptiveThreshold(lab_b_channel, 255, adaptiveMethod=cv2.ADAPTIVE_THRESH_MEAN_C, thresholdType=cv2.THRESH_BINARY, blockSize=ksize_b, C=-C_b) else: raise ValueError("Unexpected filter mode. Expected modes are 'bilateral' or 'neighborhood'.") if mask_noise: # Merge both color channels and the noise mask # Create a mask to filter out noise such as trees and other greenery based on the LAB B-channel noise_mask_part1 = cv2.inRange(lab_b_channel, noise_thresh, 255) # This catches the noise, but unfortunately also the yellow line, therefore... noise_mask_part2 = bilateral_adaptive_threshold(lab_b_channel, ksize=ksize_noise, C=C_noise) # ...this brings the yellow line back... noise_bool = np.logical_or(np.logical_not(noise_mask_part1), noise_mask_part2) # ...once we combine the two. noise_mask = np.zeros_like(rgb_r_channel, dtype=np.uint8) noise_mask[noise_bool] = 255 merged_bool = np.logical_and(np.logical_or(rgb_r_thresh, lab_b_thresh), noise_mask) merged = np.zeros_like(rgb_r_channel, dtype=np.uint8) merged[merged_bool] = 255 else: # Only merge the two color channels merged_bool = np.logical_or(rgb_r_thresh, lab_b_thresh) merged = np.zeros_like(rgb_r_channel, dtype=np.uint8) merged[merged_bool] = 255 # Apply open morphology opened = cv2.morphologyEx(merged, cv2.MORPH_OPEN, strel_open, iterations=1) return opened
Example #22
Source File: saliency_map.py From deepgaze with MIT License | 4 votes |
def returnMask(self, image, tot_bins=8, format='BGR2LAB'): """ Return the saliency mask of the input image. @param: image the image to process @param: tot_bins the number of bins used in the histogram @param: format conversion, it can be one of the following: BGR2LAB, BGR2RGB, RGB2LAB, RGB, BGR, LAB @return: the saliency mask """ if format == 'BGR2LAB': image = cv2.cvtColor(image, cv2.COLOR_BGR2LAB) elif format == 'BGR2RGB': image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) elif format == 'RGB2LAB': image = cv2.cvtColor(image, cv2.COLOR_RGB2LAB) elif format == 'RGB' or format == 'BGR' or format == 'LAB': pass else: raise ValueError('[DEEPGAZE][SALIENCY-MAP][ERROR] the input format of the image is not supported.') if DEBUG: start = timer() self._calculate_histogram(image, tot_bins=tot_bins) if DEBUG: end = timer() if DEBUG: print("--- %s calculate_histogram seconds ---" % (end - start)) if DEBUG: start = timer() number_of_colors = self._precompute_parameters() if DEBUG: end = timer() if DEBUG: print("--- number of colors: " + str(number_of_colors) + " ---") if DEBUG: print("--- %s precompute_paramters seconds ---" % (end - start)) if DEBUG: start = timer() self._bilateral_filtering() if DEBUG: end = timer() if DEBUG: print("--- %s bilateral_filtering seconds ---" % (end - start)) if DEBUG: start = timer() self._calculate_probability() if DEBUG: end = timer() if DEBUG: print("--- %s calculate_probability seconds ---" % (end - start)) if DEBUG: start = timer() self._compute_saliency_map() if DEBUG: end = timer() if DEBUG: print("--- %s compute_saliency_map seconds ---" % (end - start)) if DEBUG: start = timer() it = np.nditer(self.salient_image, flags=['multi_index'], op_flags=['writeonly']) while not it.finished: # This part takes 0.1 seconds y = it.multi_index[0] x = it.multi_index[1] #L_id = self.L_id_matrix[y, x] #A_id = self.A_id_matrix[y, x] #B_id = self.B_id_matrix[y, x] index = self.image_quantized[y, x] # These operations take 0.1 seconds index = self.map_3d_1d[index[0], index[1], index[2]] it[0] = self.saliency[index] it.iternext() if DEBUG: end = timer() # ret, self.salient_image = cv2.threshold(self.salient_image, 150, 255, cv2.THRESH_BINARY) if DEBUG: print("--- %s returnMask 'iteration part' seconds ---" % (end - start)) return self.salient_image