Python cv2.StereoBM_create() Examples
The following are 4
code examples of cv2.StereoBM_create().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: keyframes.py From pyslam with MIT License | 8 votes |
def compute_disparity_pyramid(self): self.disparity = [] stereo = cv2.StereoBM_create() # stereo = cv2.StereoSGBM_create(minDisparity=0, # numDisparities=64, # blockSize=11) # Compute disparity at full resolution and downsample disp = stereo.compute(self.im_left, self.im_right).astype(float) / 16. for pyrlevel in range(self.pyrlevels): if pyrlevel == 0: self.disparity = [disp] else: pyr_factor = 2**-pyrlevel # disp = cv2.pyrDown(disp) # Applies a large Gaussian blur # kernel! disp = disp[0::2, 0::2] self.disparity.append(disp * pyr_factor)
Example #2
Source File: keyframes.py From pyslam with MIT License | 6 votes |
def compute_depth_pyramid(self): self.depth = [] stereo = cv2.StereoBM_create() # stereo = cv2.StereoSGBM_create(minDisparity=0, # numDisparities=64, # blockSize=11) # Compute disparity at full resolution and downsample depth = self.data[1] for pyrlevel in range(self.pyrlevels): if pyrlevel == 0: self.depth = [depth] else: pyr_factor = 2**-pyrlevel depth = depth[0::2, 0::2] self.depth.append(depth)
Example #3
Source File: stereo_matcher_app.py From cvcalib with Apache License 2.0 | 6 votes |
def disparity(self): matcher = cv2.StereoBM_create(1024, 7) disparity = matcher.compute(cv2.cvtColor(self.images[0], cv2.COLOR_BGR2GRAY), cv2.cvtColor(self.images[1], cv2.COLOR_BGR2GRAY)) self.process_output(disparity)
Example #4
Source File: 5_dm_tune.py From stereopi-tutorial with GNU General Public License v3.0 | 4 votes |
def stereo_depth_map(rectified_pair): print ('SWS='+str(SWS)+' PFS='+str(PFS)+' PFC='+str(PFC)+' MDS='+\ str(MDS)+' NOD='+str(NOD)+' TTH='+str(TTH)) print (' UR='+str(UR)+' SR='+str(SR)+' SPWS='+str(SPWS)) c, r = rectified_pair[0].shape disparity = np.zeros((c, r), np.uint8) sbm = cv2.StereoBM_create(numDisparities=16, blockSize=15) #sbm.SADWindowSize = SWS sbm.setPreFilterType(1) sbm.setPreFilterSize(PFS) sbm.setPreFilterCap(PFC) sbm.setMinDisparity(MDS) sbm.setNumDisparities(NOD) sbm.setTextureThreshold(TTH) sbm.setUniquenessRatio(UR) sbm.setSpeckleRange(SR) sbm.setSpeckleWindowSize(SPWS) dmLeft = rectified_pair[0] dmRight = rectified_pair[1] #cv2.FindStereoCorrespondenceBM(dmLeft, dmRight, disparity, sbm) disparity = sbm.compute(dmLeft, dmRight) #disparity_visual = cv.CreateMat(c, r, cv.CV_8U) local_max = disparity.max() local_min = disparity.min() print ("MAX " + str(local_max)) print ("MIN " + str(local_min)) disparity_visual = (disparity-local_min)*(1.0/(local_max-local_min)) local_max = disparity_visual.max() local_min = disparity_visual.min() print ("MAX " + str(local_max)) print ("MIN " + str(local_min)) #cv.Normalize(disparity, disparity_visual, 0, 255, cv.CV_MINMAX) #disparity_visual = np.array(disparity_visual) return disparity_visual