Python cv2.ORB_create() Examples
The following are 30
code examples of cv2.ORB_create().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: find_obj.py From OpenCV-Python-Tutorial with MIT License | 10 votes |
def init_feature(name): chunks = name.split('-') if chunks[0] == 'sift': detector = cv2.xfeatures2d.SIFT_create() norm = cv2.NORM_L2 elif chunks[0] == 'surf': detector = cv2.xfeatures2d.SURF_create(800) norm = cv2.NORM_L2 elif chunks[0] == 'orb': detector = cv2.ORB_create(400) norm = cv2.NORM_HAMMING elif chunks[0] == 'akaze': detector = cv2.AKAZE_create() norm = cv2.NORM_HAMMING elif chunks[0] == 'brisk': detector = cv2.BRISK_create() norm = cv2.NORM_HAMMING else: return None, None if 'flann' in chunks: if norm == cv2.NORM_L2: flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) else: flann_params= dict(algorithm = FLANN_INDEX_LSH, table_number = 6, # 12 key_size = 12, # 20 multi_probe_level = 1) #2 matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329) else: matcher = cv2.BFMatcher(norm) return detector, matcher
Example #2
Source File: image.py From ImageAnalysis with MIT License | 6 votes |
def make_detector(self): global detector detector_node = getNode('/config/detector', True) if detector_node.getString('detector') == 'SIFT': max_features = detector_node.getInt('sift_max_features') #detector = cv2.xfeatures2d.SIFT_create(nfeatures=max_features) detector = cv2.xfeatures2d.SIFT_create() elif detector_node.getString('detector') == 'SURF': threshold = detector_node.getFloat('surf_hessian_threshold') nOctaves = detector_node.getInt('surf_noctaves') detector = cv2.xfeatures2d.SURF_create(hessianThreshold=threshold, nOctaves=nOctaves) elif detector_node.getString('detector') == 'ORB': max_features = detector_node.getInt('orb_max_features') detector = cv2.ORB_create(max_features) elif detector_node.getString('detector') == 'Star': maxSize = detector_node.getInt('star_max_size') responseThreshold = detector_node.getInt('star_response_threshold') lineThresholdProjected = detector_node.getInt('star_line_threshold_projected') lineThresholdBinarized = detector_node.getInt('star_line_threshold_binarized') suppressNonmaxSize = detector_node.getInt('star_suppress_nonmax_size') detector = cv2.xfeatures2d.StarDetector_create(maxSize, responseThreshold, lineThresholdProjected, lineThresholdBinarized, suppressNonmaxSize)
Example #3
Source File: 08_compute_F_mat.py From Practical-Computer-Vision with MIT License | 6 votes |
def compute_orb_keypoints(filename): """ Reads image from filename and computes ORB keypoints Returns image, keypoints and descriptors. """ # load image img = cv2.imread(filename) # create orb object orb = cv2.ORB_create() # set parameters orb.setScoreType(cv2.FAST_FEATURE_DETECTOR_TYPE_9_16) orb.setWTA_K(3) # detect keypoints kp = orb.detect(img,None) # for detected keypoints compute descriptors. kp, des = orb.compute(img, kp) return img,kp, des
Example #4
Source File: 04_feature_match.py From Practical-Computer-Vision with MIT License | 6 votes |
def compute_orb_keypoints(filename): """ Takes in filename to read and computes ORB keypoints Returns image, keypoints and descriptors """ img = cv2.imread(filename) img = cv2.pyrDown(img) img = cv2.pyrDown(img) # img = cv2.pyrDown(img) # img = cv2.pyrDown(img) # create orb object orb = cv2.ORB_create() # set parameters orb.setScoreType(cv2.FAST_FEATURE_DETECTOR_TYPE_9_16) orb.setWTA_K(3) kp = orb.detect(img,None) kp, des = orb.compute(img, kp) return img,kp, des
Example #5
Source File: 04_flann_feature_match.py From Practical-Computer-Vision with MIT License | 6 votes |
def compute_orb_keypoints(filename): """ Takes in filename to read and computes ORB keypoints Returns image, keypoints and descriptors """ img = cv2.imread(filename) # create orb object orb = cv2.ORB_create() # set parameters orb.setScoreType(cv2.FAST_FEATURE_DETECTOR_TYPE_9_16) orb.setWTA_K(3) kp = orb.detect(img,None) kp, des = orb.compute(img, kp) return img,kp, des
Example #6
Source File: 04_orb_detections.py From Practical-Computer-Vision with MIT License | 6 votes |
def compute_orb_keypoints(filename): """ Reads image from filename and computes ORB keypoints Returns image, keypoints and descriptors. """ # load image img = cv2.imread(filename) # create orb object orb = cv2.ORB_create() # set parameters orb.setScoreType(cv2.FAST_FEATURE_DETECTOR_TYPE_9_16) orb.setWTA_K(3) # detect keypoints kp = orb.detect(img,None) # for detected keypoints compute descriptors. kp, des = orb.compute(img, kp) return img,kp, des
Example #7
Source File: test_pickle_import_export.py From douglas-quaid with GNU General Public License v3.0 | 6 votes |
def test_pickle_import_export_ORB(self): algo = cv2.ORB_create(nfeatures=10) img = cv2.imread(str(self.test_file_path / "original.bmp"), 0) # compute the descriptors with ORB kp, des = algo.detectAndCompute(img, None) self.logger.debug(f"Keypoints : {kp}") self.logger.debug(f"Example of Keypoint") pickler = pickle_import_export.Pickler() self.logger.debug("Save to pickle ... ") pc = pickler.get_pickle_from_object(kp) self.logger.debug("Load from pickle ... ") kp2 = pickler.get_object_from_pickle(pc) for i, k in enumerate(kp): self.assertEqual(kp[i].response, kp2[i].response) self.assertEqual(kp[i].angle, kp2[i].angle) self.assertEqual(kp[i].class_id, kp2[i].class_id) self.assertEqual(kp[i].octave, kp2[i].octave) self.assertEqual(kp[i].pt, kp2[i].pt) self.assertEqual(kp[i].size, kp2[i].size)
Example #8
Source File: picture_bow_orber.py From douglas-quaid with GNU General Public License v3.0 | 6 votes |
def __init__(self, fe_conf: feature_extractor_conf.Default_feature_extractor_conf): # STD attributes self.fe_conf: feature_extractor_conf.Default_feature_extractor_conf = fe_conf self.logger = logging.getLogger(__name__) self.logger.info("Creation of a Picture BoW Orber") self.algo = cv2.ORB_create(nfeatures=fe_conf.ORB_KEYPOINTS_NB) # TODO : Dictionnary path / Vocabulary self.bow_descriptor = cv2.BOWImgDescriptorExtractor(self.algo, cv2.BFMatcher(cv2.NORM_HAMMING)) self.vocab_loaded = False try : vocab = BoWOrb_Vocabulary_Creator.load_vocab_from_file(fe_conf.BOW_VOCAB_PATH) self.bow_descriptor.setVocabulary(vocab) self.vocab_loaded = True except Exception as e : self.logger.error(f"No vocabulary file provided. Not possible to use Bow-ORB : {e}")
Example #9
Source File: pose_flow.py From detectron2-pipeline with MIT License | 5 votes |
def orb_matching(frame1, frame2, orb_features=10000): # Initiate ORB detector orb = cv2.ORB_create(nfeatures=orb_features, scoreType=cv2.ORB_FAST_SCORE) # find the keypoints and descriptors with ORB kp1, des1 = orb.detectAndCompute(frame1, None) kp2, des2 = orb.detectAndCompute(frame2, None) return flann_matching((kp1, des1), (kp2, des2)) # stack all already tracked people's info together(thanks @ZongweiZhou1)
Example #10
Source File: plane_tracker.py From OpenCV-Python-Tutorial with MIT License | 5 votes |
def __init__(self): self.detector = cv2.ORB_create( nfeatures = 1000 ) self.matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329) self.targets = [] self.frame_points = []
Example #11
Source File: pose_tracker.py From detectron2-pipeline with MIT License | 5 votes |
def __init__(self, link_len=100, num=7, mag=30, match=0.2, orb_features=1000): self.frame_tracks = [] self.last_pid = 0 self.link_len = link_len self.num = num self.mag = mag self.match = match self.orb_features = orb_features self.orb = cv2.ORB_create(nfeatures=orb_features, scoreType=cv2.ORB_FAST_SCORE)
Example #12
Source File: baselines.py From sips2_open with GNU General Public License v3.0 | 5 votes |
def __init__(self, type_string): if type_string == 'surf': self.detector = cv2.xfeatures2d.SURF_create() elif type_string == 'sift': self.detector = cv2.xfeatures2d.SIFT_create() elif type_string == 'orb': self.detector = cv2.ORB_create() else: assert False
Example #13
Source File: featureDetection.py From Finger-Detection-and-Tracking with BSD 2-Clause "Simplified" License | 5 votes |
def main(): org_image = cv2.imread("../data/house.tiff", 1) ''' SURF is better than SIFT and computes and detects feature fast, but unfortunately both are paid. Alternative, we have ORB by OpenCV. Free. OSS. PARAM: nfeatures : Number of features to be detected. Default value is around 100. ''' sift = cv2.xfeatures2d.SIFT_create() surf = cv2.xfeatures2d.SURF_create() orb = cv2.ORB_create(nfeatures=1000) kp_sift, decep_sift = sift.detectAndCompute(org_image, None) kp_surf, decep_sift = surf.detectAndCompute(org_image, None) kp_orb, decep_sift = orb.detectAndCompute(org_image, None) org_image_sift = cv2.drawKeypoints(org_image, kp_sift, None) org_image_surf = cv2.drawKeypoints(org_image, kp_surf, None) org_image_orb = cv2.drawKeypoints(org_image, kp_orb, None) cv2.imshow("SIFT Features Detected", org_image_sift) cv2.imshow("SURF Features Detected", org_image_surf) cv2.imshow("ORB Features Detected", org_image_orb) cv2.waitKey(0) cv2.destroyAllWindows()
Example #14
Source File: tools.py From BlindWatermark with GNU General Public License v3.0 | 5 votes |
def run(self): img = cv2.imread(self.ori_img) img2 = cv2.imread(self.attacked_img) height = img.shape[0] width = img.shape[1] # Initiate SIFT detector orb = cv2.ORB_create(128) MIN_MATCH_COUNT=10 # find the keypoints and descriptors with SIFT kp1, des1 = orb.detectAndCompute(img,None) kp2, des2 = orb.detectAndCompute(img2,None) FLANN_INDEX_KDTREE = 0 index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) search_params = dict(checks = 50) flann = cv2.FlannBasedMatcher(index_params, search_params) des1 = np.float32(des1) des2 = np.float32(des2) matches = flann.knnMatch(des1,des2,k=2) # store all the good matches as per Lowe's ratio test. good = [] for m,n in matches: if m.distance < self.rate*n.distance: good.append(m) if len(good)>MIN_MATCH_COUNT: src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2) dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2) M, mask = cv2.findHomography( dst_pts,src_pts, cv2.RANSAC,5.0) out = cv2.warpPerspective(img2, M, (width,height)) #先列后行 cv2.imwrite(self.outfile_name,out) self.num_of_good.emit(len(good),self.outfile_name) else : self.num_of_good.emit(0,'')
Example #15
Source File: tools.py From BlindWatermark with GNU General Public License v3.0 | 5 votes |
def recovery(ori_img,attacked_img,outfile_name = './recoveried.png',rate=0.7): img = cv2.imread(ori_img) img2 = cv2.imread(attacked_img) height = img.shape[0] width = img.shape[1] # Initiate SIFT detector orb = cv2.ORB_create(128) MIN_MATCH_COUNT=10 # find the keypoints and descriptors with SIFT kp1, des1 = orb.detectAndCompute(img,None) kp2, des2 = orb.detectAndCompute(img2,None) FLANN_INDEX_KDTREE = 0 index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) search_params = dict(checks = 50) flann = cv2.FlannBasedMatcher(index_params, search_params) des1 = np.float32(des1) des2 = np.float32(des2) matches = flann.knnMatch(des1,des2,k=2) # store all the good matches as per Lowe's ratio test. good = [] for m,n in matches: if m.distance < rate*n.distance: good.append(m) if len(good)>MIN_MATCH_COUNT: src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2) dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2) M, mask = cv2.findHomography( dst_pts,src_pts, cv2.RANSAC,5.0) out = cv2.warpPerspective(img2, M, (width,height)) #先列后行 cv2.imwrite(outfile_name,out)
Example #16
Source File: thesis.py From Image-stitcher with MIT License | 5 votes |
def time_of_detector(): import time image = [3, 19, 20] for name in image: image = cv2.imread(("../resource/{}-left.jpg".format(name))) for method in (cv2.xfeatures2d.SURF_create, cv2.xfeatures2d.SIFT_create, cv2.ORB_create): start = time.time() for i in range(10): method().detectAndCompute(image, None) print("Image {}, using {}".format(name, method)) print("Spend time: ", time.time() - start)
Example #17
Source File: ImageUtility.py From ImageStitch with MIT License | 5 votes |
def detectAndDescribe(self, image, featureMethod): ''' 功能:计算图像的特征点集合,并返回该点集&描述特征 :param image:需要分析的图像 :return:返回特征点集,及对应的描述特征(kps, features) ''' if self.isGPUAvailable == False: # CPU mode if featureMethod == "sift": descriptor = cv2.xfeatures2d.SIFT_create() elif featureMethod == "surf": descriptor = cv2.xfeatures2d.SURF_create() elif featureMethod == "orb": descriptor = cv2.ORB_create(self.orbNfeatures, self.orbScaleFactor, self.orbNlevels, self.orbEdgeThreshold, self.orbFirstLevel, self.orbWTA_K, 0, self.orbPatchSize, self.orbFastThreshold) # 检测SIFT特征点,并计算描述子 kps, features = descriptor.detectAndCompute(image, None) # 将结果转换成NumPy数组 kps = np.float32([kp.pt for kp in kps]) else: # GPU mode if featureMethod == "sift": # 目前GPU-SIFT尚未开发,先采用CPU版本的替代 descriptor = cv2.xfeatures2d.SIFT_create() kps, features = descriptor.detectAndCompute(image, None) kps = np.float32([kp.pt for kp in kps]) elif featureMethod == "surf": kps, features = self.npToKpsAndDescriptors(myGpuFeatures.detectAndDescribeBySurf(image, self.surfHessianThreshold, self.surfNOctaves,self.surfNOctaveLayers, self.surfIsExtended, self.surfKeypointsRatio, self.surfIsUpright)) elif featureMethod == "orb": kps, features = self.npToKpsAndDescriptors(myGpuFeatures.detectAndDescribeByOrb(image, self.orbNfeatures, self.orbScaleFactor, self.orbNlevels, self.orbEdgeThreshold, self.orbFirstLevel, self.orbWTA_K, 0, self.orbPatchSize, self.orbFastThreshold, self.orbBlurForDescriptor)) # 返回特征点集,及对应的描述特征 return (kps, features)
Example #18
Source File: voc_obj_similarity.py From keras-YOLOv3-model-set with MIT License | 5 votes |
def ORB_img_similarity(img1_path,img2_path): """ :param img1_path: 图片1路径 :param img2_path: 图片2路径 :return: 图片相似度 """ try: # 读取图片 img1 = cv2.imread(img1_path) img2 = cv2.imread(img2_path) # 初始化ORB检测器 orb = cv2.ORB_create() kp1, des1 = orb.detectAndCompute(img1, None) kp2, des2 = orb.detectAndCompute(img2, None) # 提取并计算特征点 bf = cv2.BFMatcher(cv2.NORM_HAMMING) # knn筛选结果 matches = bf.knnMatch(des1, trainDescriptors=des2, k=2) # 查看最大匹配点数目 good = [m for (m, n) in matches if m.distance < 0.75 * n.distance] similary = len(good) / len(matches) return similary except: return 0 # 计算图片的局部哈希值--pHash
Example #19
Source File: picture_orber.py From douglas-quaid with GNU General Public License v3.0 | 5 votes |
def __init__(self, fe_conf: feature_extractor_conf.Default_feature_extractor_conf): # STD attributes self.fe_conf : feature_extractor_conf.Default_feature_extractor_conf = fe_conf self.logger = logging.getLogger(__name__) self.logger.info("Creation of a Picture Orber") self.algo = cv2.ORB_create(nfeatures=fe_conf.ORB_KEYPOINTS_NB)
Example #20
Source File: frame.py From twitchslam with MIT License | 5 votes |
def extractFeatures(img): orb = cv2.ORB_create() # detection pts = cv2.goodFeaturesToTrack(np.mean(img, axis=2).astype(np.uint8), 3000, qualityLevel=0.01, minDistance=7) # extraction kps = [cv2.KeyPoint(x=f[0][0], y=f[0][1], _size=20) for f in pts] kps, des = orb.compute(img, kps) # return pts and des return np.array([(kp.pt[0], kp.pt[1]) for kp in kps]), des
Example #21
Source File: hook.py From stagesepx with MIT License | 5 votes |
def __init__(self, *_, **__): super().__init__(*_, **__) self._orb = cv2.ORB_create()
Example #22
Source File: ftlib.py From sea_ice_drift with GNU General Public License v3.0 | 5 votes |
def find_key_points(image, edgeThreshold=34, nFeatures=100000, nLevels=7, patchSize=34, **kwargs): ''' Initiate detector and find key points on an image Parameters ---------- image : 2D UInt8 Numpy array - image edgeThreshold : int - parameter for OpenCV detector nFeatures : int - parameter for OpenCV detector nLevels : int - parameter for OpenCV detector patchSize : int - parameter for OpenCV detector Returns ------- keyPoints : list - coordinates of keypoint on image descriptors : list - binary descriptos of kepoints ''' if cv2.__version__.startswith('3.') or cv2.__version__.startswith('4.'): detector = cv2.ORB_create() detector.setEdgeThreshold(edgeThreshold) detector.setMaxFeatures(nFeatures) detector.setNLevels(nLevels) detector.setPatchSize(patchSize) else: detector = cv2.ORB() detector.setInt('edgeThreshold', edgeThreshold) detector.setInt('nFeatures', nFeatures) detector.setInt('nLevels', nLevels) detector.setInt('patchSize', patchSize) print('ORB detector initiated') keyPoints, descriptors = detector.detectAndCompute(image, None) print('Key points found: %d' % len(keyPoints)) return keyPoints, descriptors
Example #23
Source File: keypoint_matching.py From Airtest with Apache License 2.0 | 5 votes |
def init_detector(self): """Init keypoint detector object.""" self.detector = cv2.ORB_create() # create BFMatcher object: self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING) # cv2.NORM_L1 cv2.NORM_L2 cv2.NORM_HAMMING(not useable)
Example #24
Source File: device.py From fitch with MIT License | 5 votes |
def get_interest_point_list(self, *args, **kwargs) -> typing.List[cv2.KeyPoint]: """ find key points with ORB engine """ p = self.screen_shot_to_object() orb = cv2.ORB_create(*args, **kwargs) return orb.detect(p, None)
Example #25
Source File: test_db_adder.py From douglas-quaid with GNU General Public License v3.0 | 5 votes |
def get_descriptors(self, filename="original.bmp"): self.algo = cv2.ORB_create(nfeatures=10) orb_pic = cv2.imread(str(self.test_file_path / filename), 0) key_points, descriptors = self.algo.detectAndCompute(orb_pic, None) return key_points, descriptors
Example #26
Source File: bow_orb_vocabulary_creator.py From douglas-quaid with GNU General Public License v3.0 | 5 votes |
def create_dict_from_folder(self, in_folder: pathlib.Path, out_folder: pathlib.Path, vocab_size: int, nb_keypoints: int): # Extract the list of pictures to process files_list = self.get_file_list_from_folder(in_folder) # Define the nb of elements in the vocabulary we want # TODO : Define as a function of the number of pictures ? bow_trainer = cv2.BOWKMeansTrainer(vocab_size) algo = cv2.ORB_create(nfeatures=nb_keypoints) descriptors = None nb_corr_pictures = 0 for curr_img_path in files_list: orb_pic = cv2.imread(str(curr_img_path)) # arr = np.asarray(bytearray(orb_pic), dtype=np.uint8) # orb_pic = cv2.imdecode(arr, -1) # print(f"Picture converted to CV2 UMAT {type(orb_pic)}") key_points, descriptors = algo.detectAndCompute(orb_pic, None) if descriptors is not None: bow_trainer.add(np.float32(descriptors)) nb_corr_pictures += 1 if nb_corr_pictures % 20 == 0: print(f"Working on pictures {nb_corr_pictures} out of {len(files_list)}") else: print(f"Descriptors not usables for pictures : {curr_img_path} are {descriptors}") print(f"Nb Pictures processed : {nb_corr_pictures}") print(f"Nb Pictures discarded : {len(files_list) - nb_corr_pictures}") vocab = bow_trainer.cluster().astype(descriptors.dtype) self.save_vocab_to_file(vocab, out_folder) return vocab
Example #27
Source File: params.py From stereo_ptam with GNU General Public License v3.0 | 5 votes |
def __init__(self, config='GFTT-BRIEF'): super().__init__() if config == 'GFTT-BRIEF': self.feature_detector = cv2.GFTTDetector_create( maxCorners=1000, minDistance=15.0, qualityLevel=0.001, useHarrisDetector=False) self.descriptor_extractor = cv2.xfeatures2d.BriefDescriptorExtractor_create( bytes=32, use_orientation=False) elif config == 'ORB-BRIEF': self.feature_detector = cv2.ORB_create( nfeatures=200, scaleFactor=1.2, nlevels=1, edgeThreshold=31) self.descriptor_extractor = cv2.xfeatures2d.BriefDescriptorExtractor_create( bytes=32, use_orientation=False) else: raise NotImplementedError self.descriptor_matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=False) self.matching_cell_size = 15 # pixels self.matching_neighborhood = 2 self.matching_distance = 25 self.frustum_near = 0.1 # meters self.frustum_far = 50.0 self.lc_max_inbetween_distance = 4 # meters self.lc_distance_threshold = 1.5 self.lc_embedding_distance = 22.0 self.view_image_width = 400 self.view_image_height = 250 self.view_camera_width = 0.1 self.view_viewpoint_x = 0 self.view_viewpoint_y = -1 self.view_viewpoint_z = -10 self.view_viewpoint_f = 2000
Example #28
Source File: feature_match.py From dual-fisheye-video-stitching with MIT License | 5 votes |
def BFMatch_ORB(img1, img2): # Initiate SIFT detector orb = cv2.ORB_create() # find the keypoints and descriptors with SIFT kp1, des1 = orb.detectAndCompute(img1, None) kp2, des2 = orb.detectAndCompute(img2, None) # create BFMatcher object bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) # Match descriptors. matches = bf.match(des1, des2) # Sort them in the order of their distance. matches = sorted(matches, key=lambda x: x.distance) return (kp1, kp2, matches)
Example #29
Source File: statistics.py From dual-fisheye-video-stitching with MIT License | 5 votes |
def BFMatch_ORB(img1, img2): # Initiate SIFT detector orb = cv2.ORB_create() # find the keypoints and descriptors with SIFT kp1, des1 = orb.detectAndCompute(img1, None) kp2, des2 = orb.detectAndCompute(img2, None) # create BFMatcher object bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) # Match descriptors. matches = bf.match(des1, des2) # Sort them in the order of their distance. matches = sorted(matches, key=lambda x: x.distance) return (kp1, kp2, matches)
Example #30
Source File: baselines.py From imips_open with GNU General Public License v3.0 | 5 votes |
def __init__(self, type_string): if type_string == 'surf': self.detector = cv2.xfeatures2d.SURF_create() elif type_string == 'sift': self.detector = cv2.xfeatures2d.SIFT_create() elif type_string == 'orb': self.detector = cv2.ORB_create() else: assert False