Python cv2.boxFilter() Examples
The following are 3
code examples of cv2.boxFilter().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: niblack_thresholding.py From lpr with Apache License 2.0 | 5 votes |
def niBlackThreshold( src, blockSize, k, binarizationMethod= 0 ): mean = cv2.boxFilter(src,cv2.CV_32F,(blockSize, blockSize),borderType=cv2.BORDER_REPLICATE) sqmean = cv2.sqrBoxFilter(src, cv2.CV_32F, (blockSize, blockSize), borderType = cv2.BORDER_REPLICATE) variance = sqmean - (mean*mean) stddev = np.sqrt(variance) thresh = mean + stddev * float(-k) thresh = thresh.astype(src.dtype) k = (src>thresh)*255 k = k.astype(np.uint8) return k # cv2.imshow()
Example #2
Source File: preprocessing.py From stytra with GNU General Public License v3.0 | 5 votes |
def _process( self, im, image_scale: Param(0.5, (0.05, 1.0)), filter_size: Param(2, (0, 15)), color_invert: Param(True), clip: Param(140, (0, 255)), **extraparams ): """ Optionally resizes, smooths and inverts the image :param im: :param state: :param filter_size: :param image_scale: :param color_invert: :return: """ if image_scale != 1: im = cv2.resize( im, None, fx=image_scale, fy=image_scale, interpolation=cv2.INTER_AREA ) if filter_size > 0: im = cv2.boxFilter(im, -1, (filter_size, filter_size)) if color_invert: im = 255 - im if clip > 0: im = np.maximum(im, clip) - clip if self.set_diagnostic == "filtered": self.diagnostic_image = im return NodeOutput([], im)
Example #3
Source File: KernalFiltering.py From Finger-Detection-and-Tracking with BSD 2-Clause "Simplified" License | 5 votes |
def main(): image = cv2.imread("../data/7.1.01.tiff", 1) ''' # Kernal or Convolution matrix for Identity Filter kernal = np.array(([0, 0, 0], [0, 1, 0], [0, 0, 0]), np.float32) # Kernal or Convolution matrix for Edge Detection kernal = np.array(([-1, -1, -1], [-1, 8, -1], [-1, -1, -1]), np.float32) ''' # Kernal or Convolution matrix for Box BLue Filter kernal = np.ones((5, 5), np.uint8) / 25 output = cv2.filter2D(image, -1, kernal) # Low pass filters implementation box_blur = cv2.boxFilter(image, -1, (31, 31)) simple_blur = cv2.blur(image, (21, 21)) gaussian_blur = cv2.GaussianBlur(image, (51, 51), 0) cv2.imshow("Orignal Image", image) cv2.imshow("Filtered Image", output) cv2.imshow("Box Blur", box_blur) cv2.imshow("Simple Blur", simple_blur) cv2.imshow("Gaussian Blur", gaussian_blur) cv2.waitKey(0) cv2.destroyAllWindows()