Python cv2.TM_SQDIFF Examples

The following are 15 code examples of cv2.TM_SQDIFF(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module cv2 , or try the search function .
Example #1
Source File: TemplateMatchers.py    From lackey with MIT License 8 votes vote down vote up
def findAllMatches(self, needle, similarity):
        """ Find all matches for ``needle`` with confidence better than or equal to ``similarity``.

        Returns an array of tuples ``(position, confidence)`` if match(es) is/are found,
        or an empty array otherwise.
        """
        positions = []
        method = cv2.TM_CCOEFF_NORMED

        match = cv2.matchTemplate(self.haystack, self.needle, method)

        indices = (-match).argpartition(100, axis=None)[:100] # Review the 100 top matches
        unraveled_indices = numpy.array(numpy.unravel_index(indices, match.shape)).T
        for location in unraveled_indices:
            y, x = location
            confidence = match[y][x]
            if method == cv2.TM_SQDIFF_NORMED or method == cv2.TM_SQDIFF:
                if confidence <= 1-similarity:
                    positions.append(((x, y), confidence))
            else:
                if confidence >= similarity:
                    positions.append(((x, y), confidence))

        positions.sort(key=lambda x: (x[0][1], x[0][0]))
        return positions 
Example #2
Source File: pixelmatch.py    From airtest with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def locate_img(image, template):
    img = image.copy()
    res = cv2.matchTemplate(img, template, method)
    print res
    print res.shape
    cv2.imwrite('image/shape.png', res)
    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
    print cv2.minMaxLoc(res)
    if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
        top_left = min_loc
    else:
        top_left = max_loc
    h, w = template.shape
    bottom_right = (top_left[0] + w, top_left[1]+h)
    cv2.rectangle(img, top_left, bottom_right, 255, 2)
    cv2.imwrite('image/tt.jpg', img) 
Example #3
Source File: pixelmatch.py    From ATX with Apache License 2.0 6 votes vote down vote up
def locate_img(image, template):
    img = image.copy()
    res = cv2.matchTemplate(img, template, method)
    print res
    print res.shape
    cv2.imwrite('image/shape.png', res)
    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
    print cv2.minMaxLoc(res)
    if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
        top_left = min_loc
    else:
        top_left = max_loc
    h, w = template.shape
    bottom_right = (top_left[0] + w, top_left[1]+h)
    cv2.rectangle(img, top_left, bottom_right, 255, 2)
    cv2.imwrite('image/tt.jpg', img) 
Example #4
Source File: WatermarkRemover.py    From nowatermark with MIT License 6 votes vote down vote up
def find_watermark_from_gray(self, gray_img, watermark_template_gray_img):
        """
        从原图的灰度图中寻找水印位置
        :param gray_img: 原图的灰度图
        :param watermark_template_gray_img: 水印模板的灰度图
        :return: x1, y1, x2, y2
        """
        # Load the images in gray scale

        method = cv2.TM_CCOEFF
        # Apply template Matching
        res = cv2.matchTemplate(gray_img, watermark_template_gray_img, method)
        min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

        # If the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimum
        if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
            x, y = min_loc
        else:
            x, y = max_loc

        return x, y, x + self.watermark_template_w, y + self.watermark_template_h 
Example #5
Source File: detect_by_simple_dense_optical_flow.py    From open_model_zoo with Apache License 2.0 6 votes vote down vote up
def _run_match_template_on_rect(image, prev_image, rect, increased_rect):
    subimage = _get_subimage(image, increased_rect)
    prev_template = _get_subimage(prev_image, rect)

    match = cv2.matchTemplate(subimage, prev_template, cv2.TM_SQDIFF)

    min_val, max_val, min_loc, _ = cv2.minMaxLoc(match)

    dx, dy = min_loc
    template_h, template_w = prev_template.shape[:2]
    subimage_h, subimage_w = subimage.shape[:2]

    v_x = -(subimage_w / 2.) + dx + template_w / 2.
    v_y = -(subimage_h / 2.) + dy + template_h / 2.

    v = Point(v_x, v_y)

    _draw_match(match, min_val, max_val)

    return v 
Example #6
Source File: match.py    From kog-money with MIT License 5 votes vote down vote up
def match_template1(template, img, plot=False, method=cv2.TM_SQDIFF_NORMED):
    img = cv2.imread(img, 0).copy()
    template = cv2.imread(template, 0)
    w, h = template.shape[::-1]
    if lib == OPENCV:
        res = cv2.matchTemplate(img, template, method)
        min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
        if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
            top_left = min_loc
        else:
            top_left = max_loc
    else:
        result = match_template(img, template)
        ij = np.unravel_index(np.argmax(result), result.shape)
        top_left = ij[::-1]

    bottom_right = (top_left[0] + w, top_left[1] + h)

    if plot:
        cv2.rectangle(img, top_left, bottom_right, 255, 5)
        plt.subplot(121)
        plt.imshow(img)
        plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
        plt.subplot(122)
        plt.imshow(template)

        plt.show()

    return top_left, bottom_right 
Example #7
Source File: match_template.py    From OpenCV-Python-Tutorial with MIT License 5 votes vote down vote up
def MatchingMethod(param):

   global match_method
   match_method = param

   ## [copy_source]
   img_display = img.copy()
   ## [copy_source]
   ## [match_template]
   method_accepts_mask = (cv2.TM_SQDIFF == match_method or match_method == cv2.TM_CCORR_NORMED)
   if (use_mask and method_accepts_mask):
       result = cv2.matchTemplate(img, templ, match_method, None, mask)
   else:
       result = cv2.matchTemplate(img, templ, match_method)
   ## [match_template]

   ## [normalize]
   cv2.normalize( result, result, 0, 1, cv2.NORM_MINMAX, -1 )
   ## [normalize]
   ## [best_match]
   minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(result, None)
   ## [best_match]

   ## [match_loc]
   if (match_method == cv2.TM_SQDIFF or match_method == cv2.TM_SQDIFF_NORMED):
       matchLoc = minLoc
   else:
       matchLoc = maxLoc
   ## [match_loc]

   ## [imshow]
   cv2.rectangle(img_display, matchLoc, (matchLoc[0] + templ.shape[0], matchLoc[1] + templ.shape[1]), (0,0,0), 2, 8, 0 )
   cv2.rectangle(result, matchLoc, (matchLoc[0] + templ.shape[0], matchLoc[1] + templ.shape[1]), (0,0,0), 2, 8, 0 )
   cv2.imshow(image_window, img_display)
   cv2.imshow(result_window, result)
   ## [imshow]
   pass 
Example #8
Source File: TemplateMatchers.py    From lackey with MIT License 5 votes vote down vote up
def findBestMatch(self, needle, similarity):
        """ Find the best match for ``needle`` that has a similarity better than or equal to ``similarity``.

        Returns a tuple of ``(position, confidence)`` if a match is found, or ``None`` otherwise.

        *Developer's Note - Despite the name, this method actually returns the **first** result
        with enough similarity, not the **best** result.*
        """
        method = cv2.TM_CCOEFF_NORMED
        position = None

        match = cv2.matchTemplate(self.haystack, needle, method)
        min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(match)
        if method == cv2.TM_SQDIFF_NORMED or method == cv2.TM_SQDIFF:
            confidence = min_val
            if min_val <= 1-similarity:
                # Confidence checks out
                position = min_loc
        else:
            confidence = max_val
            if max_val >= similarity:
                # Confidence checks out
                position = max_loc

        if not position:
            return None

        return (position, confidence) 
Example #9
Source File: wechat_jump.py    From wechat_jump_game with MIT License 5 votes vote down vote up
def search(img):
    result = cv2.matchTemplate(img, template, cv2.TM_SQDIFF)
    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)

    cv2.rectangle(img, (min_loc[0], min_loc[1]), (min_loc[0] + template_size[1], min_loc[1] + template_size[0]), (255, 0, 0), 4)

    return img, min_loc[0] + template_size[1] / 2, min_loc[1] +  template_size[0] 
Example #10
Source File: CutImageClass.py    From water-meter-system-complete with MIT License 5 votes vote down vote up
def getRefCoordinate(self, image, template):
#        method = cv2.TM_SQDIFF                     #2
        method = cv2.TM_SQDIFF_NORMED              #1
#        method = cv2.TM_CCORR_NORMED                #3
        method = cv2.TM_CCOEFF_NORMED                #4
        res = cv2.matchTemplate(image, template, method)
        min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
        # If the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimum
        if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
            top_left = min_loc
        else:
            top_left = max_loc
#        bottom_right = (top_left[0] + w, top_left[1] + h)
        return top_left 
Example #11
Source File: test_debug.py    From imgaug with MIT License 5 votes vote down vote up
def _find_in_image_avg_diff(cls, find_image, in_image):
        res = cv2.matchTemplate(in_image, find_image, cv2.TM_SQDIFF)
        min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

        top_left = min_loc
        bottom_right = (top_left[0] + find_image.shape[1],
                        top_left[1] + find_image.shape[0])
        image_found = in_image[top_left[1]:bottom_right[1],
                               top_left[0]:bottom_right[0],
                               :]
        diff = np.abs(image_found.astype(np.float32)
                      - find_image.astype(np.float32))
        return np.average(diff) 
Example #12
Source File: image_template.py    From airtest with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def find(search_file, image_file, threshold=0.7):
    '''
    Locate image position with cv2.templateFind

    Use pixel match to find pictures.

    Args:
        search_file(string): filename of search object
        image_file(string): filename of image to search on
        threshold: optional variable, to ensure the match rate should >= threshold

    Returns:
        A tuple like (x, y) or None if nothing found

    Raises:
        IOError: when file read error
    '''
    search = _cv2open(search_file)
    image  = _cv2open(image_file)

    w, h = search.shape[::-1]

    method = cv2.CV_TM_CCORR_NORMED
    res = cv2.matchTemplate(image, search, method)
    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
    if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
        top_left = min_loc
    else:
        top_left = max_loc
    bottom_right = (top_left[0] + w, top_left[1] + h)
    middle_point = (top_left[0]+w/2, top_left[1]+h/2)
    print top_left, bottom_right
    return middle_point

    # if len(region_center):
    #     x = int(maxloc[0]+region_center[0]-source_width/2)
    #     y = int(maxloc[1]+region_center[1]-source_height/2)
    # else:
    #     [x,y] = maxloc
    # return max_val, [x,y] 
Example #13
Source File: wechat_jump.py    From wechat_jump_game with Apache License 2.0 5 votes vote down vote up
def search(img):
    result = cv2.matchTemplate(img, template, cv2.TM_SQDIFF)
    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)

    cv2.rectangle(
        img,
        (min_loc[0], min_loc[1]),
        (min_loc[0] + template_size[1], min_loc[1] + template_size[0]),
        (255, 0, 0),
        4)
    return img, min_loc[0] + template_size[1] / 2, min_loc[1] +  template_size[0] 
Example #14
Source File: Fic.py    From RENAT with Apache License 2.0 5 votes vote down vote up
def match_template(self,img,template,threshold=u"0.8"):
        """  Matches a template in an image using TM_CCOEFF_NORMED method

        Both `img` and `tempalte` are BGR ndarray object.
        The result is in the the center and boundary of the match.
        """
        _method = cv2.TM_CCOEFF_NORMED
        gray_img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
        gray_template = cv2.cvtColor(template,cv2.COLOR_BGR2GRAY)
        w,h = gray_template.shape[::-1]

        res = cv2.matchTemplate(gray_img,gray_template,_method)
        loc = np.where(res >= float(threshold))
        if len(loc[0]) != 0 and len(loc[1]) != 0:
            min_val,max_val,min_loc,max_loc = cv2.minMaxLoc(res)
            if _method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
                top_left = min_loc
            else:
                top_left = max_loc
            bottom_right = (top_left[0] + w, top_left[1] + h)
            mx = int((top_left[0] + bottom_right[0])/2)
            my = int((top_left[1] + bottom_right[1])/2)
            result = ((mx,my),(top_left[0],top_left[1],bottom_right[0],bottom_right[1]))
            BuiltIn().log("Found image at %s" % str(result))
        else:
            result = (None,None)
            BuiltIn().log("WRN: Could not found the template")
        return result 
Example #15
Source File: matching.py    From PGSS with GNU General Public License v3.0 5 votes vote down vote up
def pokemon_image_matching(pokemon_image_name, fort_img_name, is_pokemon):

    pokemon_image = cv2.imread(pokemon_image_name, cv2.IMREAD_UNCHANGED)
    fort_img = cv2.imread(fort_img_name, 3)

    if pokemon_image is None or fort_img is None:
        return 100000.0

    croped = pokemon_image[0:256,0:190]

    height_f, width_f, channels_f = fort_img.shape
    scale = 147 / 256 * width_f / 133

    scaled = cv2.resize(croped, None, fx=scale, fy=scale)

    scaled_h, scaled_w, scaled_c = scaled.shape
    channels = cv2.split(scaled)

    if is_pokemon:
        scale_crop_fort = width_f / 156
        target_x = (16*scale_crop_fort)
        target_y = (28*scale_crop_fort)
        fort_img = fort_img[target_x-2:target_x+2+scaled_h, target_y-2:target_y+2+scaled_w]
    else:
        scale_crop_fort = width_f / 133
        target_x = int(12*scale_crop_fort)
        target_y = int(24*scale_crop_fort)
        fort_img = fort_img[target_x-2:target_x+2+scaled_h, target_y-2:target_y+2+scaled_w]

    scaled_no_alpth = cv2.merge([channels[0], channels[1], channels[2]])
    transparent_mask = cv2.merge([channels[3], channels[3], channels[3]])

    white_pixels = channels[3].sum()/255

    result = cv2.matchTemplate(fort_img, scaled_no_alpth, cv2.TM_SQDIFF, mask=transparent_mask)

    min_val3, max_val3, min_loc3, max_loc3 = cv2.minMaxLoc(result)

    min_val3 = min_val3 / white_pixels

    return min_val3