Python cv2.IMWRITE_PNG_COMPRESSION Examples
The following are 30
code examples of cv2.IMWRITE_PNG_COMPRESSION().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: merge_oof.py From SpaceNet_Off_Nadir_Solutions with Apache License 2.0 | 6 votes |
def process_image(fid): fid = fid + '.png' used_msks = [] for pr_f in pred_folders: msk1 = cv2.imread(path.join('/wdata/', pr_f, '{0}.png'.format(fid.split('.')[0])), cv2.IMREAD_UNCHANGED) used_msks.append(msk1) msk = np.zeros_like(used_msks[0], dtype='float') for i in range(len(pred_folders)): p = used_msks[i] msk += (coefs[i] * p.astype('float')) msk /= np.sum(coefs) cv2.imwrite(path.join('/wdata/merged_oof', fid), msk.astype('uint8'), [cv2.IMWRITE_PNG_COMPRESSION, 9])
Example #2
Source File: convert_test.py From SpaceNet_Off_Nadir_Solutions with Apache License 2.0 | 6 votes |
def process_image(img_id): if 'Pan-Sharpen_' in img_id: img_id = img_id.split('Pan-Sharpen_')[1] img = io.imread(path.join(test_dir, '_'.join(img_id.split('_')[:4]), 'Pan-Sharpen', 'Pan-Sharpen_' + img_id+'.tif')) nir = img[:, :, 3:] img = img[:, :, :3] np.clip(img, None, threshold, out=img) img = np.floor_divide(img, threshold / 255).astype('uint8') cv2.imwrite(path.join(test_png, img_id + '.png'), img, [cv2.IMWRITE_PNG_COMPRESSION, 9]) img2 = io.imread(path.join(test_dir, '_'.join(img_id.split('_')[:4]), 'MS', 'MS_' + img_id+'.tif')) img2 = np.rollaxis(img2, 0, 3) img2 = cv2.resize(img2, (900, 900), interpolation=cv2.INTER_LANCZOS4) img_0_3_5 = (np.clip(img2[..., [0, 3, 5]], None, (2000, 3000, 3000)) / (np.array([2000, 3000, 3000]) / 255)).astype('uint8') cv2.imwrite(path.join(test_png2, img_id + '.png'), img_0_3_5, [cv2.IMWRITE_PNG_COMPRESSION, 9]) pan = io.imread(path.join(test_dir, '_'.join(img_id.split('_')[:4]), 'PAN', 'PAN_' + img_id+'.tif')) pan = pan[..., np.newaxis] img_pan_6_7 = np.concatenate([pan, img2[..., 7:], nir], axis=2) img_pan_6_7 = (np.clip(img_pan_6_7, None, (3000, 5000, 5000)) / (np.array([3000, 5000, 5000]) / 255)).astype('uint8') cv2.imwrite(path.join(test_png3, img_id + '.png'), img_pan_6_7, [cv2.IMWRITE_PNG_COMPRESSION, 9])
Example #3
Source File: main_frame.py From Rule-based_Expert_System with GNU General Public License v2.0 | 6 votes |
def shape_chosen(self, event): tmp = self.get_item_text(event.GetItem()) if not tmp: return else: chosen_shape = ('the shape is ' + tmp) set_goal(self.engine, chosen_shape) results, matched_facts, hit_rules = main_run(self.engine) source_image = cv2.imread(self.pic_path) detection_image = np.zeros(source_image.shape, np.uint8) draw_lines(detection_image, matched_facts, self.contour_num) cv2.imwrite('detection.png', detection_image, [int(cv2.IMWRITE_PNG_COMPRESSION), 0]) self.show_picture('detection.png', (420, 30)) self.resultText.Clear() self.resultText.WriteText(get_result(results)) self.matchedFactText.Clear() self.matchedFactText.WriteText(get_matched_facts(matched_facts, self.contour_num)) self.hitRuleText.Clear() self.hitRuleText.WriteText(get_hit_rules(hit_rules, self.contour_num))
Example #4
Source File: tc-run.py From rpitelecine with BSD 3-Clause "New" or "Revised" License | 6 votes |
def writer(): # Writer is run in a separate thread, so that writing is concurrent # to taking the pictures. global q, job_finished, still_writing write_time = Stopwatch() #writeParams = (int(cv2.IMWRITE_PNG_COMPRESSION),7) while not job_finished: still_writing = True while not q.empty(): write_time.start() fn,img = q.get() try: cv2.imwrite(fn,img, fileSaveParams) t=write_time.stop() print('Written {} in {:.02f} secs'.format(fn,t)) except: t=write_time.stop() print('Failed to write {} in {:.02f} secs'.format(fn,t)) # Finished all jobs and queue is empty still_writing = False
Example #5
Source File: utils.py From video-object-removal with MIT License | 6 votes |
def save_img(img, filename): print("Save %s" %filename) if img.ndim == 3: img = img[:, :, ::-1] ### RGB to BGR ## clip to [0, 1] img = np.clip(img, 0, 1) ## quantize to [0, 255] img = np.uint8(img * 255.0) cv2.imwrite(filename, img, [cv2.IMWRITE_PNG_COMPRESSION, 0]) ###################################################################################### ## Flow utility ######################################################################################
Example #6
Source File: eval.py From DBPN-Pytorch with MIT License | 5 votes |
def save_img(img, img_name): save_img = img.squeeze().clamp(0, 1).numpy().transpose(1,2,0) # save img save_dir=os.path.join(opt.output,opt.test_dataset) if not os.path.exists(save_dir): os.makedirs(save_dir) save_fn = save_dir +'/'+ img_name cv2.imwrite(save_fn, cv2.cvtColor(save_img*255, cv2.COLOR_BGR2RGB), [cv2.IMWRITE_PNG_COMPRESSION, 0])
Example #7
Source File: summary.py From ADL with MIT License | 5 votes |
def create_image_summary(name, val): """ Args: name(str): val(np.ndarray): 4D tensor of NHWC. assume RGB if C==3. Can be either float or uint8. Range has to be [0,255]. Returns: tf.Summary: """ assert isinstance(name, six.string_types), type(name) n, h, w, c = val.shape val = val.astype('uint8') s = tf.Summary() imparams = [cv2.IMWRITE_PNG_COMPRESSION, 9] for k in range(n): arr = val[k] # CV2 will only write correctly in BGR chanel order if c == 3: arr = cv2.cvtColor(arr, cv2.COLOR_RGB2BGR) elif c == 4: arr = cv2.cvtColor(arr, cv2.COLOR_RGBA2BGRA) tag = name if n == 1 else '{}/{}'.format(name, k) retval, img_str = cv2.imencode('.png', arr, imparams) if not retval: # Encoding has failed. continue img_str = img_str.tostring() img = tf.Summary.Image() img.height = h img.width = w # 1 - grayscale 3 - RGB 4 - RGBA img.colorspace = c img.encoded_image_string = img_str s.value.add(tag=tag, image=img) return s
Example #8
Source File: mask_utils.py From SpaceNet_Off_Nadir_Solutions with Apache License 2.0 | 5 votes |
def create_mask(img_id, data_dir): labels_dir = os.path.join(data_dir, "labels") masks_dir = os.path.join(data_dir, "masks_all") os.makedirs(labels_dir, exist_ok=True) os.makedirs(masks_dir, exist_ok=True) labels = cv2.imread(path.join(labels_dir, '{0}.tif'.format(img_id)), cv2.IMREAD_UNCHANGED) final_mask = np.zeros((labels.shape[0], labels.shape[1], 3)) if np.sum(labels) == 0: cv2.imwrite(path.join(masks_dir, '{0}.png'.format(img_id)), final_mask, [cv2.IMWRITE_PNG_COMPRESSION, 9]) return final_mask ships_num = np.max(labels) if ships_num > 0: for i in range(1, ships_num + 1): ship_mask = np.zeros_like(labels, dtype='bool') ship_mask[labels == i] = 1 area = np.sum(ship_mask) if area < 200: contour_size = 1 elif area < 500: contour_size = 2 else: contour_size = 3 eroded = binary_erosion(ship_mask, iterations=contour_size) countour_mask = ship_mask ^ eroded final_mask[..., 0] += ship_mask final_mask[..., 1] += countour_mask final_mask[..., 2] = create_separation(labels) msk = np.clip(final_mask * 255, 0, 255) cv2.imwrite(path.join(masks_dir, '{0}.png'.format(img_id)), msk, [cv2.IMWRITE_PNG_COMPRESSION, 9])
Example #9
Source File: datagen.py From SRNet-Datagen with Apache License 2.0 | 5 votes |
def main(): i_t_dir = os.path.join(cfg.data_dir, cfg.i_t_dir) i_s_dir = os.path.join(cfg.data_dir, cfg.i_s_dir) t_sk_dir = os.path.join(cfg.data_dir, cfg.t_sk_dir) t_t_dir = os.path.join(cfg.data_dir, cfg.t_t_dir) t_b_dir = os.path.join(cfg.data_dir, cfg.t_b_dir) t_f_dir = os.path.join(cfg.data_dir, cfg.t_f_dir) mask_t_dir = os.path.join(cfg.data_dir, cfg.mask_t_dir) makedirs(i_t_dir) makedirs(i_s_dir) makedirs(t_sk_dir) makedirs(t_t_dir) makedirs(t_b_dir) makedirs(t_f_dir) makedirs(mask_t_dir) mp_gen = multiprocess_datagen(cfg.process_num, cfg.data_capacity) mp_gen.multiprocess_runningqueue() digit_num = len(str(cfg.sample_num)) - 1 for idx in range(cfg.sample_num): print ("Generating step {:>6d} / {:>6d}".format(idx + 1, cfg.sample_num)) i_t, i_s, t_sk, t_t, t_b, t_f, mask_t = mp_gen.dequeue_data() i_t_path = os.path.join(i_t_dir, str(idx).zfill(digit_num) + '.png') i_s_path = os.path.join(i_s_dir, str(idx).zfill(digit_num) + '.png') t_sk_path = os.path.join(t_sk_dir, str(idx).zfill(digit_num) + '.png') t_t_path = os.path.join(t_t_dir, str(idx).zfill(digit_num) + '.png') t_b_path = os.path.join(t_b_dir, str(idx).zfill(digit_num) + '.png') t_f_path = os.path.join(t_f_dir, str(idx).zfill(digit_num) + '.png') mask_t_path = os.path.join(cfg.data_dir, cfg.mask_t_dir, str(idx).zfill(digit_num) + '.png') cv2.imwrite(i_t_path, i_t, [int(cv2.IMWRITE_PNG_COMPRESSION), 0]) cv2.imwrite(i_s_path, i_s, [int(cv2.IMWRITE_PNG_COMPRESSION), 0]) cv2.imwrite(t_sk_path, t_sk, [int(cv2.IMWRITE_PNG_COMPRESSION), 0]) cv2.imwrite(t_t_path, t_t, [int(cv2.IMWRITE_PNG_COMPRESSION), 0]) cv2.imwrite(t_b_path, t_b, [int(cv2.IMWRITE_PNG_COMPRESSION), 0]) cv2.imwrite(t_f_path, t_f, [int(cv2.IMWRITE_PNG_COMPRESSION), 0]) cv2.imwrite(mask_t_path, mask_t, [int(cv2.IMWRITE_PNG_COMPRESSION), 0]) mp_gen.terminate_pool()
Example #10
Source File: opencv.py From faceswap with GNU General Public License v3.0 | 5 votes |
def get_save_args(self): """ Return the save parameters for the file format """ filetype = self.config["format"] args = list() if filetype == "jpg" and self.config["jpg_quality"] > 0: args = (cv2.IMWRITE_JPEG_QUALITY, # pylint: disable=no-member self.config["jpg_quality"]) if filetype == "png" and self.config["png_compress_level"] > -1: args = (cv2.IMWRITE_PNG_COMPRESSION, # pylint: disable=no-member self.config["png_compress_level"]) logger.debug(args) return args
Example #11
Source File: utils.py From video-object-removal with MIT License | 5 votes |
def save_img(img, filename): print("Save %s" %filename) ## clip to [0, 1] img = np.clip(img, 0, 1) ## quantize to [0, 255] img = np.uint8(img * 255.0) cv2.imwrite(filename, img, [cv2.IMWRITE_PNG_COMPRESSION, 0])
Example #12
Source File: utils.py From SRNet with GNU General Public License v3.0 | 5 votes |
def save_result(save_dir, result, name, mode): # save output images o_sk, o_t, o_b, o_f = result if not os.path.exists(save_dir): os.makedirs(save_dir) cv2.imwrite(os.path.join(save_dir, name + 'o_f.png'), o_f, [int(cv2.IMWRITE_PNG_COMPRESSION), 0]) if mode == 1: cv2.imwrite(os.path.join(save_dir, name + 'o_sk.png'), o_sk, [int(cv2.IMWRITE_PNG_COMPRESSION), 0]) cv2.imwrite(os.path.join(save_dir, name + 'o_t.png'), o_t, [int(cv2.IMWRITE_PNG_COMPRESSION), 0]) cv2.imwrite(os.path.join(save_dir, name + 'o_b.png'), o_b, [int(cv2.IMWRITE_PNG_COMPRESSION), 0])
Example #13
Source File: extract_subimages.py From EDVR with Apache License 2.0 | 5 votes |
def worker(path, opt): crop_sz = opt['crop_sz'] step = opt['step'] thres_sz = opt['thres_sz'] img_name = osp.basename(path) img = cv2.imread(path, cv2.IMREAD_UNCHANGED) n_channels = len(img.shape) if n_channels == 2: h, w = img.shape elif n_channels == 3: h, w, c = img.shape else: raise ValueError('Wrong image shape - {}'.format(n_channels)) h_space = np.arange(0, h - crop_sz + 1, step) if h - (h_space[-1] + crop_sz) > thres_sz: h_space = np.append(h_space, h - crop_sz) w_space = np.arange(0, w - crop_sz + 1, step) if w - (w_space[-1] + crop_sz) > thres_sz: w_space = np.append(w_space, w - crop_sz) index = 0 for x in h_space: for y in w_space: index += 1 if n_channels == 2: crop_img = img[x:x + crop_sz, y:y + crop_sz] else: crop_img = img[x:x + crop_sz, y:y + crop_sz, :] crop_img = np.ascontiguousarray(crop_img) cv2.imwrite( osp.join(opt['save_folder'], img_name.replace('.png', '_s{:03d}.png'.format(index))), crop_img, [cv2.IMWRITE_PNG_COMPRESSION, opt['compression_level']]) return 'Processing {:s} ...'.format(img_name)
Example #14
Source File: eval_gan.py From DBPN-Pytorch with MIT License | 5 votes |
def save_img(img, img_name): save_img = img.squeeze().clamp(0, 1).numpy().transpose(1,2,0) # save img save_dir=os.path.join(opt.output,opt.test_dataset) if not os.path.exists(save_dir): os.makedirs(save_dir) save_fn = save_dir +'/'+ img_name cv2.imwrite(save_fn, cv2.cvtColor(save_img*255, cv2.COLOR_BGR2RGB), [cv2.IMWRITE_PNG_COMPRESSION, 0])
Example #15
Source File: depth_map_utils.py From monopsr with MIT License | 5 votes |
def save_depth_map(save_path, depth_map, version='cv2', png_compression=3): """Saves depth map to disk as uint16 png Args: save_path: path to save depth map depth_map: depth map numpy array [h w] version: 'cv2' or 'pypng' png_compression: Only when version is 'cv2', sets png compression level. A lower value is faster with larger output, a higher value is slower with smaller output. """ # Convert depth map to a uint16 png depth_image = (depth_map * 256.0).astype(np.uint16) if version == 'cv2': cv2.imwrite(save_path, depth_image, [cv2.IMWRITE_PNG_COMPRESSION, png_compression]) elif version == 'pypng': with open(save_path, 'wb') as f: depth_image = (depth_map * 256.0).astype(np.uint16) writer = png.Writer(width=depth_image.shape[1], height=depth_image.shape[0], bitdepth=16, greyscale=True) writer.write(f, depth_image) else: raise ValueError('Invalid version', version)
Example #16
Source File: extract_subimgs_single.py From nnabla-examples with Apache License 2.0 | 5 votes |
def worker(path, save_folder, crop_sz, step, thres_sz, compression_level): img_name = os.path.basename(path) img = cv2.imread(path, cv2.IMREAD_UNCHANGED) n_channels = len(img.shape) if n_channels == 2: h, w = img.shape elif n_channels == 3: h, w, c = img.shape else: raise ValueError('Wrong image shape - {}'.format(n_channels)) h_space = np.arange(0, h - crop_sz + 1, step) if h - (h_space[-1] + crop_sz) > thres_sz: h_space = np.append(h_space, h - crop_sz) w_space = np.arange(0, w - crop_sz + 1, step) if w - (w_space[-1] + crop_sz) > thres_sz: w_space = np.append(w_space, w - crop_sz) index = 0 for x in h_space: for y in w_space: index += 1 if n_channels == 2: crop_img = img[x:x + crop_sz, y:y + crop_sz] else: crop_img = img[x:x + crop_sz, y:y + crop_sz, :] crop_img = np.ascontiguousarray(crop_img) # var = np.var(crop_img / 255) # if var > 0.008: # print(img_name, index_str, var) cv2.imwrite( os.path.join(save_folder, img_name.replace( '.png', '_s{:03d}.png'.format(index))), crop_img, [cv2.IMWRITE_PNG_COMPRESSION, compression_level]) return 'Processing {:s} ...'.format(img_name)
Example #17
Source File: extract_subimages.py From mmsr with Apache License 2.0 | 5 votes |
def worker(path, opt): crop_sz = opt['crop_sz'] step = opt['step'] thres_sz = opt['thres_sz'] img_name = osp.basename(path) img = cv2.imread(path, cv2.IMREAD_UNCHANGED) n_channels = len(img.shape) if n_channels == 2: h, w = img.shape elif n_channels == 3: h, w, c = img.shape else: raise ValueError('Wrong image shape - {}'.format(n_channels)) h_space = np.arange(0, h - crop_sz + 1, step) if h - (h_space[-1] + crop_sz) > thres_sz: h_space = np.append(h_space, h - crop_sz) w_space = np.arange(0, w - crop_sz + 1, step) if w - (w_space[-1] + crop_sz) > thres_sz: w_space = np.append(w_space, w - crop_sz) index = 0 for x in h_space: for y in w_space: index += 1 if n_channels == 2: crop_img = img[x:x + crop_sz, y:y + crop_sz] else: crop_img = img[x:x + crop_sz, y:y + crop_sz, :] crop_img = np.ascontiguousarray(crop_img) cv2.imwrite( osp.join(opt['save_folder'], img_name.replace('.png', '_s{:03d}.png'.format(index))), crop_img, [cv2.IMWRITE_PNG_COMPRESSION, opt['compression_level']]) return 'Processing {:s} ...'.format(img_name)
Example #18
Source File: save_image.py From image-processing-pipeline with MIT License | 5 votes |
def map(self, data): image = data[self.src] image_id = data["image_id"] # Prepare output for image based on image_id output = image_id.split(os.path.sep) dirname = output[:-1] if len(dirname) > 0: dirname = os.path.join(*dirname) dirname = os.path.join(self.path, dirname) os.makedirs(dirname, exist_ok=True) else: dirname = self.path filename = f"{output[-1].rsplit('.', 1)[0]}.{self.image_ext}" path = os.path.join(dirname, filename) if self.image_ext == "jpg": cv2.imwrite(path, image, (cv2.IMWRITE_JPEG_QUALITY, self.jpg_quality) if self.jpg_quality else None) elif self.image_ext == "png": cv2.imwrite(path, image, (cv2.IMWRITE_PNG_COMPRESSION, self.png_compression) if self.png_compression else None) else: raise Exception("Unsupported image format") return data
Example #19
Source File: recordio.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def pack_img(header, img, quality=95, img_fmt='.jpg'): """Pack an image into ``MXImageRecord``. Parameters ---------- header : IRHeader Header of the image record. ``header.label`` can be a number or an array. See more detail in ``IRHeader``. img : numpy.ndarray Image to be packed. quality : int Quality for JPEG encoding in range 1-100, or compression for PNG encoding in range 1-9. img_fmt : str Encoding of the image (.jpg for JPEG, .png for PNG). Returns ------- s : str The packed string. Examples -------- >>> label = 4 # label can also be a 1-D array, for example: label = [1,2,3] >>> id = 2574 >>> header = mx.recordio.IRHeader(0, label, id, 0) >>> img = cv2.imread('test.jpg') >>> packed_s = mx.recordio.pack_img(header, img) """ assert cv2 is not None jpg_formats = ['.JPG', '.JPEG'] png_formats = ['.PNG'] encode_params = None if img_fmt.upper() in jpg_formats: encode_params = [cv2.IMWRITE_JPEG_QUALITY, quality] elif img_fmt.upper() in png_formats: encode_params = [cv2.IMWRITE_PNG_COMPRESSION, quality] ret, buf = cv2.imencode(img_fmt, img, encode_params) assert ret, 'failed to encode image' return pack(header, buf.tostring())
Example #20
Source File: summary.py From tensorpack with Apache License 2.0 | 5 votes |
def create_image_summary(name, val): """ Args: name(str): val(np.ndarray): 4D tensor of NHWC. assume RGB if C==3. Can be either float or uint8. Range has to be [0,255]. Returns: tf.Summary: """ assert isinstance(name, six.string_types), type(name) n, h, w, c = val.shape val = val.astype('uint8') s = tf.Summary() imparams = [cv2.IMWRITE_PNG_COMPRESSION, 9] for k in range(n): arr = val[k] # CV2 will only write correctly in BGR chanel order if c == 3: arr = cv2.cvtColor(arr, cv2.COLOR_RGB2BGR) elif c == 4: arr = cv2.cvtColor(arr, cv2.COLOR_RGBA2BGRA) tag = name if n == 1 else '{}/{}'.format(name, k) retval, img_str = cv2.imencode('.png', arr, imparams) if not retval: # Encoding has failed. continue img_str = img_str.tostring() img = tf.Summary.Image() img.height = h img.width = w # 1 - grayscale 3 - RGB 4 - RGBA img.colorspace = c img.encoded_image_string = img_str s.value.add(tag=tag, image=img) return s
Example #21
Source File: summary.py From petridishnn with MIT License | 5 votes |
def create_image_summary(name, val): """ Args: name(str): val(np.ndarray): 4D tensor of NHWC. assume RGB if C==3. Can be either float or uint8. Range has to be [0,255]. Returns: tf.Summary: """ assert isinstance(name, six.string_types), type(name) n, h, w, c = val.shape val = val.astype('uint8') s = tf.Summary() imparams = [cv2.IMWRITE_PNG_COMPRESSION, 9] for k in range(n): arr = val[k] # CV2 will only write correctly in BGR chanel order if c == 3: arr = cv2.cvtColor(arr, cv2.COLOR_RGB2BGR) elif c == 4: arr = cv2.cvtColor(arr, cv2.COLOR_RGBA2BGRA) tag = name if n == 1 else '{}/{}'.format(name, k) retval, img_str = cv2.imencode('.png', arr, imparams) if not retval: # Encoding has failed. continue img_str = img_str.tostring() img = tf.Summary.Image() img.height = h img.width = w # 1 - grayscale 3 - RGB 4 - RGBA img.colorspace = c img.encoded_image_string = img_str s.value.add(tag=tag, image=img) return s
Example #22
Source File: saveTensorToImages.py From nconv with GNU General Public License v3.0 | 5 votes |
def saveTensorToImages(t, idxs, save_to_path): if os.path.exists(save_to_path)==False: os.mkdir(save_to_path) for i in range(t.size(0)): im = t[i,:,:,:].detach().data.cpu().numpy() im = np.transpose(im, (1,2,0)).astype(np.uint16) cv2.imwrite(os.path.join(save_to_path, str(idxs[i].data.cpu().numpy()).zfill(10)+'.png'), im, [cv2.IMWRITE_PNG_COMPRESSION, 4] )
Example #23
Source File: main.py From STARnet with MIT License | 5 votes |
def save_img(img, img_name): save_img = img.squeeze().clamp(0, 1).numpy().transpose(1,2,0) # save img save_fn = 'im'+img_name+'_'+opt.model_type+opt.prefix+'.png' cv2.imwrite(save_fn, cv2.cvtColor(save_img*255, cv2.COLOR_BGR2RGB), [cv2.IMWRITE_PNG_COMPRESSION, 0])
Example #24
Source File: eval_star_t_hr.py From STARnet with MIT License | 5 votes |
def save_img(img, d_dir,img_name, pred_flag): save_img = img.squeeze().clamp(0, 1).numpy().transpose(1,2,0) filename = os.path.splitext(img_name) # save img save_dir=os.path.join(opt.output, d_dir) if not os.path.exists(save_dir): os.makedirs(save_dir) if pred_flag: save_fn = save_dir +'/'+ filename[0]+'_'+opt.model_type+filename[1] else: save_fn = save_dir +'/'+ img_name cv2.imwrite(save_fn, cv2.cvtColor(save_img*255, cv2.COLOR_BGR2RGB), [cv2.IMWRITE_PNG_COMPRESSION, 0])
Example #25
Source File: eval.py From STARnet with MIT License | 5 votes |
def save_img(img, d_dir,img_name, pred_flag): save_img = img.squeeze().clamp(0, 1).numpy().transpose(1,2,0) filename = os.path.splitext(img_name) # save img save_dir=os.path.join(opt.output, d_dir) if not os.path.exists(save_dir): os.makedirs(save_dir) if pred_flag: save_fn = save_dir +'/'+ filename[0]+'_'+opt.model_type+filename[1] else: save_fn = save_dir +'/'+ img_name cv2.imwrite(save_fn, cv2.cvtColor(save_img*255, cv2.COLOR_BGR2RGB), [cv2.IMWRITE_PNG_COMPRESSION, 0])
Example #26
Source File: main_refinement_t_sr_hr.py From STARnet with MIT License | 5 votes |
def save_img(img, img_name): save_img = img.squeeze().clamp(0, 1).numpy().transpose(1,2,0) # save img save_fn = 'im'+img_name+'_'+opt.model_type+opt.prefix+'.png' cv2.imwrite(save_fn, cv2.cvtColor(save_img*255, cv2.COLOR_BGR2RGB), [cv2.IMWRITE_PNG_COMPRESSION, 0])
Example #27
Source File: main_refinement_flow.py From STARnet with MIT License | 5 votes |
def save_img(img, img_name): save_img = img.squeeze().clamp(0, 1).numpy().transpose(1,2,0) # save img save_fn = 'im'+img_name+'_'+opt.model_type+opt.prefix+'_'+opt.train_obj+'.png' cv2.imwrite(save_fn, cv2.cvtColor(save_img*255, cv2.COLOR_BGR2RGB), [cv2.IMWRITE_PNG_COMPRESSION, 0])
Example #28
Source File: iSeeBetterTest.py From iSeeBetter with MIT License | 5 votes |
def save_img(img, img_name, pred_flag): save_img = img.squeeze().clamp(0, 1).numpy().transpose(1,2,0) # save img save_dir=os.path.join(args.output, args.data_dir, os.path.splitext(args.file_list)[0]+'_'+str(args.upscale_factor)+'x') if not os.path.exists(save_dir): os.makedirs(save_dir) if pred_flag: save_fn = save_dir +'/'+ img_name+'_'+args.model_type+'F'+str(args.nFrames)+'.png' else: save_fn = save_dir +'/'+ img_name+'.png' cv2.imwrite(save_fn, cv2.cvtColor(save_img*255, cv2.COLOR_BGR2RGB), [cv2.IMWRITE_PNG_COMPRESSION, 0])
Example #29
Source File: extract_subimgs_single.py From BasicSR with Apache License 2.0 | 5 votes |
def worker(path, save_folder, crop_sz, step, thres_sz, compression_level): img_name = os.path.basename(path) img = cv2.imread(path, cv2.IMREAD_UNCHANGED) n_channels = len(img.shape) if n_channels == 2: h, w = img.shape elif n_channels == 3: h, w, c = img.shape else: raise ValueError('Wrong image shape - {}'.format(n_channels)) h_space = np.arange(0, h - crop_sz + 1, step) if h - (h_space[-1] + crop_sz) > thres_sz: h_space = np.append(h_space, h - crop_sz) w_space = np.arange(0, w - crop_sz + 1, step) if w - (w_space[-1] + crop_sz) > thres_sz: w_space = np.append(w_space, w - crop_sz) index = 0 for x in h_space: for y in w_space: index += 1 if n_channels == 2: crop_img = img[x:x + crop_sz, y:y + crop_sz] else: crop_img = img[x:x + crop_sz, y:y + crop_sz, :] crop_img = np.ascontiguousarray(crop_img) # var = np.var(crop_img / 255) # if var > 0.008: # print(img_name, index_str, var) cv2.imwrite( os.path.join(save_folder, img_name.replace('.png', '_s{:03d}.png'.format(index))), crop_img, [cv2.IMWRITE_PNG_COMPRESSION, compression_level]) return 'Processing {:s} ...'.format(img_name)
Example #30
Source File: color2gray.py From BasicSR with Apache License 2.0 | 5 votes |
def worker(path, save_folder, mode, compression_level): img_name = os.path.basename(path) img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR if mode == 'gray': img_y = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) else: img_y = bgr2ycbcr(img, only_y=True) cv2.imwrite(os.path.join(save_folder, img_name), img_y, [cv2.IMWRITE_PNG_COMPRESSION, compression_level]) return 'Processing {:s} ...'.format(img_name)