Python cv2.cvtColor() Examples
The following are 30
code examples of cv2.cvtColor().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: generate_coco_json.py From coco-json-converter with GNU General Public License v3.0 | 14 votes |
def __get_annotation__(self, mask, image=None): _, contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) segmentation = [] for contour in contours: # Valid polygons have >= 6 coordinates (3 points) if contour.size >= 6: segmentation.append(contour.flatten().tolist()) RLEs = cocomask.frPyObjects(segmentation, mask.shape[0], mask.shape[1]) RLE = cocomask.merge(RLEs) # RLE = cocomask.encode(np.asfortranarray(mask)) area = cocomask.area(RLE) [x, y, w, h] = cv2.boundingRect(mask) if image is not None: image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) cv2.drawContours(image, contours, -1, (0,255,0), 1) cv2.rectangle(image,(x,y),(x+w,y+h), (255,0,0), 2) cv2.imshow("", image) cv2.waitKey(1) return segmentation, [x, y, w, h], area
Example #2
Source File: histcomparison.py From pedestrian-haar-based-detector with GNU General Public License v2.0 | 8 votes |
def main(): imagePath = "img.jpg" img = cv2.imread(imagePath) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) generate_histogram(gray) cv2.imwrite("before.jpg", gray) gray = cv2.equalizeHist(gray) generate_histogram(gray) cv2.imwrite("after.jpg",gray) return 0
Example #3
Source File: tracking.py From OpenCV-Computer-Vision-Projects-with-Python with MIT License | 8 votes |
def _update_mean_shift_bookkeeping(self, frame, box_grouped): """Preprocess all valid bounding boxes for mean-shift tracking This method preprocesses all relevant bounding boxes (those that have been detected by both mean-shift tracking and saliency) for the next mean-shift step. :param frame: current RGB input frame :param box_grouped: list of bounding boxes """ hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) self.object_roi = [] self.object_box = [] for box in box_grouped: (x, y, w, h) = box hsv_roi = hsv[y:y + h, x:x + w] mask = cv2.inRange(hsv_roi, np.array((0., 60., 32.)), np.array((180., 255., 255.))) roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0, 180]) cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX) self.object_roi.append(roi_hist) self.object_box.append(box)
Example #4
Source File: utils.py From tf2-yolo3 with Apache License 2.0 | 8 votes |
def draw_labels(x, y, class_names=None): img = x.numpy() if img.ndim == 2 or img.shape[2] == 1: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) boxes, classes = tf.split(y, (4, 1), axis=-1) classes = classes[..., 0] wh = np.flip(img.shape[0:2]) min_wh = np.amin(wh) if min_wh <= 100: font_size = 0.5 else: font_size = 1 for i in range(len(boxes)): x1y1 = tuple((np.array(boxes[i][0:2]) * wh).astype(np.int32)) x2y2 = tuple((np.array(boxes[i][2:4]) * wh).astype(np.int32)) img = cv2.rectangle(img, x1y1, x2y2, (255, 0, 0), 1) if class_names: img = cv2.putText(img, class_names[classes[i]], x1y1, cv2.FONT_HERSHEY_COMPLEX_SMALL, font_size, (0, 0, 255), 1) else: img = cv2.putText(img, str(classes[i]), x1y1, cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1) return img
Example #5
Source File: utils.py From tf2-yolo3 with Apache License 2.0 | 8 votes |
def draw_outputs(img, outputs, class_names=None): boxes, objectness, classes = outputs #boxes, objectness, classes = boxes[0], objectness[0], classes[0] wh = np.flip(img.shape[0:2]) if img.ndim == 2 or img.shape[2] == 1: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) min_wh = np.amin(wh) if min_wh <= 100: font_size = 0.5 else: font_size = 1 for i in range(classes.shape[0]): x1y1 = tuple((np.array(boxes[i][0:2]) * wh).astype(np.int32)) x2y2 = tuple((np.array(boxes[i][2:4]) * wh).astype(np.int32)) img = cv2.rectangle(img, x1y1, x2y2, (255, 0, 0), 1) img = cv2.putText(img, '{}'.format(int(classes[i])), x1y1, cv2.FONT_HERSHEY_COMPLEX_SMALL, font_size, (0, 0, 255), 1) return img
Example #6
Source File: detect.py From pedestrian-haar-based-detector with GNU General Public License v2.0 | 7 votes |
def main(): #IMG PATHS imagePath = "test3.jpg" cascPath = "cascades/haarcascade_pedestrian.xml" pplCascade = cv2.CascadeClassifier(cascPath) image = cv2.imread(imagePath) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) gray = normalize_grayimage(gray) pedestrians = pplCascade.detectMultiScale( gray, scaleFactor=1.2, minNeighbors=10, minSize=(32,96), flags = cv2.cv.CV_HAAR_SCALE_IMAGE ) print "Found {0} ppl!".format(len(pedestrians)) #Draw a rectangle around the detected objects for (x, y, w, h) in pedestrians: cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2) cv2.imwrite("saida.jpg", image) cv2.imshow("Ppl found", image) cv2.waitKey(0) return 0
Example #7
Source File: object_detection_multithreading.py From object_detector_app with MIT License | 7 votes |
def worker(input_q, output_q): # Load a (frozen) Tensorflow model into memory. detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') sess = tf.Session(graph=detection_graph) fps = FPS().start() while True: fps.update() frame = input_q.get() frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) output_q.put(detect_objects(frame_rgb, sess, detection_graph)) fps.stop() sess.close()
Example #8
Source File: datasets.py From pruning_yolov3 with GNU General Public License v3.0 | 7 votes |
def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5): x = (np.random.uniform(-1, 1, 3) * np.array([hgain, sgain, vgain]) + 1).astype(np.float32) # random gains img_hsv = (cv2.cvtColor(img, cv2.COLOR_BGR2HSV) * x.reshape((1, 1, 3))).clip(None, 255).astype(np.uint8) cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed # def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5): # original version # # SV augmentation by 50% # img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # hue, sat, val # # S = img_hsv[:, :, 1].astype(np.float32) # saturation # V = img_hsv[:, :, 2].astype(np.float32) # value # # a = random.uniform(-1, 1) * sgain + 1 # b = random.uniform(-1, 1) * vgain + 1 # S *= a # V *= b # # img_hsv[:, :, 1] = S if a < 1 else S.clip(None, 255) # img_hsv[:, :, 2] = V if b < 1 else V.clip(None, 255) # cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
Example #9
Source File: chapter2.py From OpenCV-Computer-Vision-Projects-with-Python with MIT License | 6 votes |
def ProcessFrame(self, frame): # segment arm region segment = self.SegmentArm(frame) # make a copy of the segmented image to draw on draw = cv2.cvtColor(segment, cv2.COLOR_GRAY2RGB) # draw some helpers for correctly placing hand cv2.circle(draw,(self.imgWidth/2,self.imgHeight/2),3,[255,102,0],2) cv2.rectangle(draw, (self.imgWidth/3,self.imgHeight/3), (self.imgWidth*2/3, self.imgHeight*2/3), [255,102,0],2) # find the hull of the segmented area, and based on that find the # convexity defects [contours,defects] = self.FindHullDefects(segment) # detect the number of fingers depending on the contours and convexity defects # draw defects that belong to fingers green, others red [nofingers,draw] = self.DetectNumberFingers(contours, defects, draw) # print number of fingers on image cv2.putText(draw, str(nofingers), (30,30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255)) return draw
Example #10
Source File: facerec_from_webcam_mult_thread.py From face-attendance-machine with Apache License 2.0 | 6 votes |
def worker(input_q, output_q): # Load a (frozen) Tensorflow model into memory. fps = FPS().start() while True: myprint("updata start ", time.time()) fps.update() myprint("updata end ", time.time()) # global lock # if lock.acquire(): # lock.release() frame = input_q.get() myprint("out queue {} and input que size {} after input_q get".format(output_q.qsize(), input_q.qsize()), time.time()) myprint("out queue {} and input que size {} after lock release ".format(output_q.qsize(), input_q.qsize()), time.time()) myprint("face process start", time.time()) # frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) out_frame = face_process(frame) myprint("out queue {} and input que size {}".format(output_q.qsize(), input_q.qsize()), time.time()) output_q.put(out_frame) myprint("out queue {} and input que size {} ".format(output_q.qsize(), input_q.qsize()), time.time()) fps.stop()
Example #11
Source File: data.py From kuzushiji-recognition with MIT License | 6 votes |
def __getitem__(self, index, to_tensor=True): fn = self.image_fns[index] img = cv2.cvtColor(cv2.imread(fn, 1), cv2.COLOR_BGR2RGB) img, pad_top, pad_left = KuzushijiDataset.pad_to_ratio(img, ratio=1.5) h, w = img.shape[:2] # print(h / w, pad_left, pad_top) assert img.ndim == 3 scaled_imgs = [] for scale in self.scales: h_scale = int(scale * self.height) w_scale = int(scale * self.width) simg = cv2.resize(img, (w_scale, h_scale)) if to_tensor: assert simg.ndim == 3, simg.ndim simg = simg.transpose((2, 0, 1)) simg = th.from_numpy(simg.copy()) scaled_imgs.append(simg) return scaled_imgs + [fn]
Example #12
Source File: surface.py From License-Plate-Recognition with MIT License | 6 votes |
def show_roi(self, r, roi, color): if r : roi = cv2.cvtColor(roi, cv2.COLOR_BGR2RGB) roi = Image.fromarray(roi) self.imgtk_roi = ImageTk.PhotoImage(image=roi) self.roi_ctl.configure(image=self.imgtk_roi, state='enable') self.r_ctl.configure(text=str(r)) self.update_time = time.time() try: c = self.color_transform[color] self.color_ctl.configure(text=c[0], background=c[1], state='enable') except: self.color_ctl.configure(state='disabled') elif self.update_time + 8 < time.time(): self.roi_ctl.configure(state='disabled') self.r_ctl.configure(text="") self.color_ctl.configure(state='disabled')
Example #13
Source File: functional.py From torch-toolbox with BSD 3-Clause "New" or "Revised" License | 6 votes |
def to_tensor(pic): """Convert a ``numpy.ndarray`` image to tensor. See ``ToTensor`` for more details. Args: pic (numpy.ndarray): Image to be converted to tensor. Returns: Tensor: Converted image. """ if _is_numpy_image(pic): if pic.ndim == 2: pic = cv2.cvtColor(pic, cv2.COLOR_GRAY2RGB) img = torch.from_numpy(pic.transpose((2, 0, 1))) # backward compatibility if isinstance(img, torch.ByteTensor): return img.float().div(255) else: return img else: raise TypeError('pic should be ndarray. Got {}.'.format(type(pic)))
Example #14
Source File: functional.py From torch-toolbox with BSD 3-Clause "New" or "Revised" License | 6 votes |
def adjust_saturation(img, saturation_factor): """Adjust color saturation of an image. Args: img (CV Image): CV Image to be adjusted. saturation_factor (float): How much to adjust the saturation. 0 will give a black and white image, 1 will give the original image while 2 will enhance the saturation by a factor of 2. Returns: CV Image: Saturation adjusted image. """ if not _is_numpy_image(img): raise TypeError('img should be CV Image. Got {}'.format(type(img))) im = img.astype(np.float32) degenerate = cv2.cvtColor( cv2.cvtColor( im, cv2.COLOR_RGB2GRAY), cv2.COLOR_GRAY2RGB) im = (1 - saturation_factor) * degenerate + saturation_factor * im im = im.clip(min=0, max=255) return im.astype(img.dtype)
Example #15
Source File: object_detection_app.py From object_detector_app with MIT License | 6 votes |
def worker(input_q, output_q): # Load a (frozen) Tensorflow model into memory. detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') sess = tf.Session(graph=detection_graph) fps = FPS().start() while True: fps.update() frame = input_q.get() frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) output_q.put(detect_objects(frame_rgb, sess, detection_graph)) fps.stop() sess.close()
Example #16
Source File: imgproc.py From dataflow with Apache License 2.0 | 6 votes |
def _augment(self, img, r): old_dtype = img.dtype if img.ndim == 3: if self.rgb is not None: m = cv2.COLOR_RGB2GRAY if self.rgb else cv2.COLOR_BGR2GRAY grey = cv2.cvtColor(img.astype('float32'), m) mean = np.mean(grey) else: mean = np.mean(img, axis=(0, 1), keepdims=True) else: mean = np.mean(img) img = img * r + mean * (1 - r) if self.clip or old_dtype == np.uint8: img = np.clip(img, 0, 255) return img.astype(old_dtype)
Example #17
Source File: emotionclassification.py From ConvolutionalEmotion with MIT License | 6 votes |
def getPeakFeatures(): net = DecafNet() features = numpy.zeros((number_sequences,feature_length)) labels = numpy.zeros((number_sequences,1)) counter = 0 # Maybe sort them for participant in os.listdir(os.path.join(data_dir,image_dir)): for sequence in os.listdir(os.path.join(data_dir,image_dir, participant)): if sequence != ".DS_Store": image_files = sorted(os.listdir(os.path.join(data_dir,image_dir, participant,sequence))) image_file = image_files[-1] print counter, image_file imarray = cv2.imread(os.path.join(data_dir,image_dir, participant,sequence,image_file)) imarray = cv2.cvtColor(imarray,cv2.COLOR_BGR2GRAY) scores = net.classify(imarray, center_only=True) features[counter] = net.feature(feature_level)#.flatten() label_file = open(os.path.join(data_dir,label_dir, participant,sequence,image_file[:-4]+"_emotion.txt")) labels[counter] = eval(label_file.read()) label_file.close() counter += 1 numpy.save("featuresPeak5",features) numpy.save("labelsPeak5",labels)
Example #18
Source File: Main.py From bjtu_BinocularCameraRecord with MIT License | 6 votes |
def loop2(self,text,w=1280,h=720): cap = cv2.VideoCapture(int(text)) cap.set(6 ,cv2.VideoWriter_fourcc('M', 'J', 'P', 'G') ); global capnum2 capnum2 = int(text) cap.set(3,w); cap.set(4,h); global update2 update2 = 1 global shotmark2 while (update2 == 1): ret, frame = cap.read() if shotmark2 == 1: fn = self.lineEdit.text() name = "photo/2_"+fn + "video.jpg" if os.path.exists(name): name = "photo/2_" + fn + "video"+str(int(time.time()))+".jpg" cv2.imwrite(name, frame) shotmark2 = 0 frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) self.original2_image.updateImage(frame) # cap.release() cv_img_rgb = np.zeros((700,700,3)) self.original2_image.updateImage(cv_img_rgb)
Example #19
Source File: functional.py From torch-toolbox with BSD 3-Clause "New" or "Revised" License | 6 votes |
def adjust_contrast(img, contrast_factor): """Adjust contrast of an Image. Args: img (CV Image): CV Image to be adjusted. contrast_factor (float): How much to adjust the contrast. Can be any non negative number. 0 gives a solid gray image, 1 gives the original image while 2 increases the contrast by a factor of 2. Returns: CV Image: Contrast adjusted image. """ if not _is_numpy_image(img): raise TypeError('img should be CV Image. Got {}'.format(type(img))) im = img.astype(np.float32) mean = round(cv2.cvtColor(im, cv2.COLOR_RGB2GRAY).mean()) im = (1 - contrast_factor) * mean + contrast_factor * im im = im.clip(min=0, max=255) return im.astype(img.dtype)
Example #20
Source File: surface.py From License-Plate-Recognition with MIT License | 6 votes |
def get_imgtk(self, img_bgr): img = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB) im = Image.fromarray(img) imgtk = ImageTk.PhotoImage(image=im) wide = imgtk.width() high = imgtk.height() if wide > self.viewwide or high > self.viewhigh: wide_factor = self.viewwide / wide high_factor = self.viewhigh / high factor = min(wide_factor, high_factor) wide = int(wide * factor) if wide <= 0 : wide = 1 high = int(high * factor) if high <= 0 : high = 1 im=im.resize((wide, high), Image.ANTIALIAS) imgtk = ImageTk.PhotoImage(image=im) return imgtk
Example #21
Source File: train_featurizer.py From HardRLWithYoutube with MIT License | 5 votes |
def preprocess_image(image, width, height): """ Changes size, makes image monochromatic """ image = cv2.resize(image, (width, height)) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) image = np.array(image, dtype=np.uint8) image = np.expand_dims(image, -1) return image
Example #22
Source File: detector.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def detect_and_visualize(self, im_list, root_dir=None, extension=None, classes=[], thresh=0.6, show_timer=False): """ wrapper for im_detect and visualize_detection Parameters: ---------- im_list : list of str or str image path or list of image paths root_dir : str or None directory of input images, optional if image path already has full directory information extension : str or None image extension, eg. ".jpg", optional Returns: ---------- """ dets = self.im_detect(im_list, root_dir, extension, show_timer=show_timer) if not isinstance(im_list, list): im_list = [im_list] assert len(dets) == len(im_list) for k, det in enumerate(dets): img = cv2.imread(im_list[k]) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) self.visualize_detection(img, det, classes, thresh)
Example #23
Source File: compare_layers.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def read_image(img_path, image_dims=None, mean=None): """ Reads an image from file path or URL, optionally resizing to given image dimensions and subtracting mean. :param img_path: path to file, or url to download :param image_dims: image dimensions to resize to, or None :param mean: mean file to subtract, or None :return: loaded image, in RGB format """ import urllib filename = img_path.split("/")[-1] if img_path.startswith('http'): urllib.urlretrieve(img_path, filename) img = cv2.imread(filename) else: img = cv2.imread(img_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) if image_dims is not None: img = cv2.resize(img, image_dims) # resize to image_dims to fit model img = np.rollaxis(img, 2) # change to (c, h, w) order img = img[np.newaxis, :] # extend to (n, c, h, w) if mean is not None: mean = np.array(mean) if mean.shape == (3,): mean = mean[np.newaxis, :, np.newaxis, np.newaxis] # extend to (n, c, 1, 1) img = img.astype(np.float32) - mean # subtract mean return img
Example #24
Source File: atari_wrappers.py From HardRLWithYoutube with MIT License | 5 votes |
def observation(self, frame): frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) frame = cv2.resize(frame, (self.width, self.height), interpolation=cv2.INTER_AREA) return frame[:, :, None]
Example #25
Source File: gradcam.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def get_img_heatmap(orig_img, activation_map): """Draw a heatmap on top of the original image using intensities from activation_map""" heatmap = cv2.applyColorMap(activation_map, cv2.COLORMAP_COOL) heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB) img_heatmap = np.float32(heatmap) + np.float32(orig_img) img_heatmap = img_heatmap / np.max(img_heatmap) img_heatmap *= 255 return img_heatmap.astype(int)
Example #26
Source File: BlurDetection.py From python-- with GNU General Public License v3.0 | 5 votes |
def preImgOps(self, imgName): """ 图像的预处理操作 :param imgName: 图像的而明朝 :return: 灰度化和resize之后的图片对象 """ strPath = self.strDir + imgName img = cv2.imread(strPath) # 读取图片 cv2.moveWindow("", 1000, 100) # cv2.imshow("原始图", img) # 预处理操作 reImg = cv2.resize(img, (800, 900), interpolation=cv2.INTER_CUBIC) # img2gray = cv2.cvtColor(reImg, cv2.COLOR_BGR2GRAY) # 将图片压缩为单通道的灰度图 return img2gray, reImg
Example #27
Source File: inputs.py From NGU-scripts with GNU Lesser General Public License v3.0 | 5 votes |
def image_search(x_start :int, y_start :int, x_end :int, y_end :int, img :str, threshold :int, bmp :image =None) -> Optional[Tuple[int, int]]: """Search the screen for the supplied picture. Returns a tuple with x,y-coordinates, or None if result is below the threshold. Keyword arguments: image -- Filename or path to file that you search for. threshold -- The level of fuzziness to use - a perfect match will be close to 1, but probably never 1. In my testing use a value between 0.7-0.95 depending on how strict you wish to be. bmp -- a bitmap from the get_bitmap() function, use this if you're performing multiple different OCR-readings in succession from the same page. This is to avoid to needlessly get the same bitmap multiple times. If a bitmap is not passed, the function will get the bitmap itself. (default None) """ if not bmp: bmp = Inputs.get_bitmap() # Bitmaps are created with a 8px border search_area = bmp.crop((x_start + 8, y_start + 8, x_end + 8, y_end + 8)) search_area = numpy.asarray(search_area) search_area = cv2.cvtColor(search_area, cv2.COLOR_RGB2GRAY) template = cv2.imread(img, 0) res = cv2.matchTemplate(search_area, template, cv2.TM_CCOEFF_NORMED) _, max_val, _, max_loc = cv2.minMaxLoc(res) if max_val < threshold: return None return max_loc
Example #28
Source File: inputs.py From NGU-scripts with GNU Lesser General Public License v3.0 | 5 votes |
def find_all( x_start :int, y_start :int, x_end :int, y_end :int, img :str, threshold: float, bmp :image=None) -> tuple: """Search the screen for the supplied picture. Returns a list with x, y-coordinates with all matches, or None if result is below the threshold. Keyword arguments: image -- Filename or path to file that you search for. threshold -- The level of fuzziness to use - a perfect match will be close to 1, but probably never 1. In my testing use a value between 0.7-0.95 depending on how strict you wish to be. bmp -- a bitmap from the get_bitmap() function, use this if you're performing multiple different OCR-readings in succession from the same page. This is to avoid to needlessly get the same bitmap multiple times. If a bitmap is not passed, the function will get the bitmap itself. (default None) """ if not bmp: bmp = Inputs.get_bitmap() # Bitmaps are created with a 8px border search_area = bmp.crop((x_start + 8, y_start + 8, x_end + 8, y_end + 8)) search_area = numpy.asarray(search_area) search_area = cv2.cvtColor(search_area, cv2.COLOR_RGB2GRAY) template = cv2.imread(img, 0) w, h = template.shape[::-1] res = cv2.matchTemplate(search_area, template, cv2.TM_CCOEFF_NORMED) locs = numpy.where(res >= threshold) lst = [] for loc in zip(*locs[::-1]): lst.append((loc[0] + w // 2, loc[1] + h // 2)) return lst
Example #29
Source File: data_augmentation.py From Yolo-v2-pytorch with MIT License | 5 votes |
def __call__(self, data): def clip_hue(hue_channel): hue_channel[hue_channel >= 360] -= 360 hue_channel[hue_channel < 0] += 360 return hue_channel image, label = data adjust_hue = uniform(-self.hue, self.hue) adjust_saturation = uniform(1, self.saturation) if uniform(0, 1) >= self.prob: adjust_saturation = 1 / adjust_saturation adjust_value = uniform(1, self.value) if uniform(0, 1) >= self.prob: adjust_value = 1 / adjust_value image = image.astype(np.float32) / 255 image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) image[:, :, 0] += adjust_hue image[:, :, 0] = clip_hue(image[:, :, 0]) image[:, :, 1] = np.clip(adjust_saturation * image[:, :, 1], 0.0, 1.0) image[:, :, 2] = np.clip(adjust_value * image[:, :, 2], 0.0, 1.0) image = cv2.cvtColor(image, cv2.COLOR_HSV2RGB) image = (image * 255).astype(np.float32) return image, label
Example #30
Source File: gradcam_demo.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def read_image_cv(path): return cv2.resize(cv2.cvtColor(cv2.imread(path), cv2.COLOR_BGR2RGB), image_sz) # synset.txt contains the names of Imagenet categories # Load the file to memory and create a helper method to query category_index -> category name