Python cv2.getTickFrequency() Examples
The following are 30
code examples of cv2.getTickFrequency().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: h5_test.py From keras-image-segmentation with MIT License | 6 votes |
def make_h5py(): x_train_paths, y_train_paths = get_data('train') x_val_paths, y_val_paths = get_data('val') x_test_paths, y_test_paths = get_data('test') h5py_file = h5py.File(os.path.join(dir_path, 'data.h5'), 'w') start = cv2.getTickCount() write_data(h5py_file, 'train', x_train_paths, y_train_paths) time = (cv2.getTickCount()-start)/cv2.getTickFrequency() print ('parsing train data, Time:%.3fs'%time) start = cv2.getTickCount() write_data(h5py_file, 'val', x_val_paths, y_val_paths) time = (cv2.getTickCount()-start)/cv2.getTickFrequency() print ('parsing val data, Time:%.3fs'%time) start = cv2.getTickCount() write_data(h5py_file, 'test', x_test_paths, y_test_paths) time = (cv2.getTickCount()-start)/cv2.getTickFrequency() print ('parsing test data, Time:%.3fs'%time)
Example #2
Source File: webcam_gui.py From PyCV-time with MIT License | 6 votes |
def webcam_gui(filter_func, video_src=0): cap = cv2.VideoCapture(video_src) key_code = -1 while(key_code == -1): t = cv2.getTickCount() # read a frame ret, frame = cap.read() fps = cv2.getTickFrequency() / (cv2.getTickCount() - t) print("Frame rate: " + str(fps)) # run filter with the arguments frame_out = filter_func(frame) # show the image cv2.imshow('Press any key to exit', frame_out) # wait for the key key_code = cv2.waitKey(10) cap.release() cv2.destroyAllWindows()
Example #3
Source File: predict.py From fine-tuning with GNU General Public License v3.0 | 6 votes |
def predict(name): frame = cv.imread(name) blob = cv.dnn.blobFromImage(frame, 1/255, (inpWidth, inpHeight), [0,0,0], 1, crop=False) # Sets the input to the network net.setInput(blob) # Runs the forward pass to get output of the output layers outs = net.forward(getOutputsNames(net)) # Remove the bounding boxes with low confidence boxes1=postprocess(frame, outs) # Put efficiency information. The function getPerfProfile returns the # overall time for inference(t) and the timings for each of the layers(in layersTimes) t, _ = net.getPerfProfile() #label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency()) #cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) cv.imwrite("prediction.jpg",frame) return boxes1 # In[ ]:
Example #4
Source File: yolo3.py From ai-smarthome with BSD 2-Clause "Simplified" License | 6 votes |
def detect(self, frame): fconv = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) image = Image.fromarray(fconv) # Create a 4D blob from a frame. blob = cv2.dnn.blobFromImage(frame, 1/255, (YoloV3.inpWidth, YoloV3.inpHeight), [0,0,0], 1, crop=False) # Sets the input to the network self.net.setInput(blob) # Runs the forward pass to get output of the output layers outs = self.net.forward(self.getOutputsNames()) # Remove the bounding boxes with low confidence detection = self.postprocess(frame, outs, self.colors) # Put efficiency information. The function getPerfProfile returns the # overall time for inference(t) and the timings for each of the layers(in layersTimes) if self.drawPerformance: t, _ = self.net.getPerfProfile() label = 'Inference time: %.2f ms' % (t * 1000.0 / cv2.getTickFrequency()) cv2.putText(frame, label, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) return detection
Example #5
Source File: common.py From PyCV-time with MIT License | 5 votes |
def clock(): return cv2.getTickCount() / cv2.getTickFrequency()
Example #6
Source File: helpers.py From vidpipe with GNU General Public License v3.0 | 5 votes |
def clock(): return cv2.getTickCount() / cv2.getTickFrequency()
Example #7
Source File: timer.py From pyslam with GNU General Public License v3.0 | 5 votes |
def pause(self): now_time = cv2.getTickCount() self._accumulated += (now_time - self._start_time)/cv2.getTickFrequency() self._is_paused = True
Example #8
Source File: timer.py From pyslam with GNU General Public License v3.0 | 5 votes |
def elapsed(self): if self._is_paused: self._elapsed = self._accumulated else: now = cv2.getTickCount() self._elapsed = self._accumulated + (now - self._start_time)/cv2.getTickFrequency() if self._is_verbose is True: name = self._name if self._is_paused: name += ' [paused]' message = 'Timer::' + name + ' - elapsed: ' + str(self._elapsed) timer_print(message) return self._elapsed
Example #9
Source File: common.py From pi-tracking-telescope with MIT License | 5 votes |
def clock(): return cv2.getTickCount() / cv2.getTickFrequency()
Example #10
Source File: common.py From pi-tracking-telescope with MIT License | 5 votes |
def clock(): return cv2.getTickCount() / cv2.getTickFrequency()
Example #11
Source File: common.py From pi-tracking-telescope with MIT License | 5 votes |
def clock(): return cv2.getTickCount() / cv2.getTickFrequency()
Example #12
Source File: common.py From CameraCalibration with GNU General Public License v3.0 | 5 votes |
def clock(): return cv2.getTickCount() / cv2.getTickFrequency()
Example #13
Source File: common.py From TecoGAN with Apache License 2.0 | 5 votes |
def clock(): return cv.getTickCount() / cv.getTickFrequency()
Example #14
Source File: common.py From how_do_drones_work with BSD 3-Clause "New" or "Revised" License | 5 votes |
def clock(): return cv2.getTickCount() / cv2.getTickFrequency()
Example #15
Source File: common.py From ImageAnalysis with MIT License | 5 votes |
def clock(): return cv2.getTickCount() / cv2.getTickFrequency()
Example #16
Source File: test_webcam.py From face_landmark_dnn with MIT License | 5 votes |
def webcam_main(): print("Camera sensor warming up...") vs = cv2.VideoCapture(0) time.sleep(2.0) mark_detector = MarkDetector() # loop over the frames from the video stream while True: _, frame = vs.read() start = cv2.getTickCount() frame = imutils.resize(frame, width=750, height=750) frame = cv2.flip(frame, 1) faceboxes = mark_detector.extract_cnn_facebox(frame) if faceboxes is not None: for facebox in faceboxes: # Detect landmarks from image of 64X64 with grayscale. face_img = frame[facebox[1]: facebox[3], facebox[0]: facebox[2]] # cv2.rectangle(frame, (facebox[0], facebox[1]), (facebox[2], facebox[3]), (0, 255, 0), 2) face_img = cv2.resize(face_img, (CNN_INPUT_SIZE, CNN_INPUT_SIZE)) face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2GRAY) face_img0 = face_img.reshape(1, CNN_INPUT_SIZE, CNN_INPUT_SIZE, 1) land_start_time = time.time() marks = mark_detector.detect_marks_keras(face_img0) # marks *= 255 marks *= facebox[2] - facebox[0] marks[:, 0] += facebox[0] marks[:, 1] += facebox[1] # Draw Predicted Landmarks mark_detector.draw_marks(frame, marks, color=(255, 255, 255), thick=2) fps_time = (cv2.getTickCount() - start)/cv2.getTickFrequency() cv2.putText(frame, '%.1ffps'%(1/fps_time) , (frame.shape[1]-65,15), cv2.FONT_HERSHEY_DUPLEX, 0.5, (0,255,0)) # show the frame cv2.imshow("Frame", frame) # writer.write(frame) key = cv2.waitKey(1) & 0xFF # if the `q` key was pressed, break from the loop if key == ord("q"): break # do a bit of cleanup cv2.destroyAllWindows() vs.stop()
Example #17
Source File: common.py From PyCV-time with MIT License | 5 votes |
def clock(): return cv2.getTickCount() / cv2.getTickFrequency()
Example #18
Source File: common.py From PyCV-time with MIT License | 5 votes |
def clock(): return cv2.getTickCount() / cv2.getTickFrequency()
Example #19
Source File: common.py From PyCV-time with MIT License | 5 votes |
def clock(): return cv2.getTickCount() / cv2.getTickFrequency()
Example #20
Source File: inpainting.py From open_model_zoo with Apache License 2.0 | 5 votes |
def infer(self, image, mask): t0 = cv2.getTickCount() output = self._exec_model.infer(inputs={self._input_layer_names[0]: image, self._input_layer_names[1]: mask}) self.infer_time = (cv2.getTickCount() - t0) / cv2.getTickFrequency() return output[self._output_layer_name]
Example #21
Source File: estimator.py From open_model_zoo with Apache License 2.0 | 5 votes |
def _infer(self, prep_img): t0 = cv2.getTickCount() output = self._exec_model.infer(inputs={self._input_layer_name: prep_img}) self.infer_time = ((cv2.getTickCount() - t0) / cv2.getTickFrequency()) return output[self._output_layer_name][0]
Example #22
Source File: detector.py From open_model_zoo with Apache License 2.0 | 5 votes |
def _infer(self, prep_img): t0 = cv2.getTickCount() output = self._exec_model.infer(inputs={self._input_layer_name: prep_img}) self.infer_time = (cv2.getTickCount() - t0) / cv2.getTickFrequency() return output
Example #23
Source File: detector.py From open_model_zoo with Apache License 2.0 | 5 votes |
def infer(self, image): t0 = cv2.getTickCount() output = self._exec_model.infer(inputs={self._input_layer_name: image}) self.infer_time = (cv2.getTickCount() - t0) / cv2.getTickFrequency() return output
Example #24
Source File: common.py From OpenCV-Snapchat-DogFilter with BSD 3-Clause "New" or "Revised" License | 5 votes |
def clock(): return cv2.getTickCount() / cv2.getTickFrequency()
Example #25
Source File: query_aimsim_images.py From crossgap_il_rl with GNU General Public License v2.0 | 5 votes |
def capture_image(self): t_start = cv2.getTickCount() responses = self.client.simGetImages([ airsim.ImageRequest("0", airsim.ImageType.DepthVis), # depth visualization image airsim.ImageRequest("1", airsim.ImageType.DepthPerspective, True), # depth in perspective projection airsim.ImageRequest("1", airsim.ImageType.Scene)]) # scene vision image in png format # print('Retrieved images: %d', len(responses)) for response in responses: if response.pixels_as_float: self.img_f_raw = img_tools.process_float_img(response) self.img_f = img_tools.float_img_to_display(self.img_f_raw) # img_f = img_tools.displat_float_img( img_tools.process_float_img(response)) # cv2.imshow("img_float", img_tools.displat_float_img(img_f)) elif response.compress: # png format self.img_png = img_tools.process_compress_img(response) # cv2.imshow("img_png", img_png) pass else: # uncompressed array self.img_rgba = img_tools.process_rgba_img(response) # cv2.imshow("img_rgba", img_rgba) try: self.img_f = np.uint8(self.img_f) self.img_f_rgb = cv2.cvtColor(self.img_f, cv2.COLOR_GRAY2RGB) self.img_combi = np.concatenate((self.img_png, 255 - self.img_f_rgb), axis=0) # print(vis.shape) # cv2.imshow("image", self.img_combi) except Exception as e: print(e) # print(img_f_rgb.shape, img_png.shape) pass # print("Query image cost time = %.2f" % ((cv2.getTickCount() - t_start) * 1000.0 / cv2.getTickFrequency())) return self.img_combi # cv2.waitKey(1)
Example #26
Source File: common.py From OpenCV-Python-Tutorial with MIT License | 5 votes |
def clock(): return cv2.getTickCount() / cv2.getTickFrequency()
Example #27
Source File: callbacks.py From keras-image-segmentation with MIT License | 5 votes |
def train_visualization_seg(self, model, epoch, path): # image_name_list = sorted(glob(os.path.join(self.flag.data_path,'val/IMAGE/*/frankfurt_000000_014480_leftImg8bit.png'))) # print (image_name_list) image_name = path #'./result/frankfurt_000000_014480_leftImg8bit.png' image_height = self.flag.image_height image_width = self.flag.image_width imgInput = cv2.imread(image_name, self.flag.color_mode) imgInput = cv2.cvtColor(imgInput, cv2.COLOR_BGR2RGB) output_path = self.flag.output_dir input_data = imgInput.reshape((1,image_height,image_width,self.flag.color_mode*2+1)) t_start = cv2.getTickCount() result = model.predict(input_data, 1) t_total = (cv2.getTickCount() - t_start) / cv2.getTickFrequency() * 1000 print ("[*] Predict Time: %.3f ms"%t_total) imgMask = (result[0]*255).astype(np.uint8) imgShow = cv2.cvtColor(imgInput, cv2.COLOR_RGB2BGR).copy() #cv2.cvtColor(imgInput, cv2.COLOR_GRAY2BGR) # imgMaskColor = cv2.applyColorMap(imgMask, cv2.COLORMAP_JET) imgMaskColor = imgMask imgShow = cv2.addWeighted(imgShow, 0.5, imgMaskColor, 0.6, 0.0) output_path = os.path.join(self.flag.output_dir, '%04d_'%epoch+os.path.basename(image_name)) mask_path = os.path.join(self.flag.output_dir, 'mask_%04d_'%epoch+os.path.basename(image_name)) cv2.imwrite(output_path, imgShow) cv2.imwrite(mask_path, imgMaskColor) # print "SAVE:[%s]"%output_path # cv2.imwrite(os.path.join(output_path, 'img%04d.png'%epoch), imgShow) # cv2.namedWindow("show", 0) # cv2.resizeWindow("show", 800, 800) # cv2.imshow("show", imgShow) # cv2.waitKey(1)
Example #28
Source File: common.py From MachineLearning with Apache License 2.0 | 5 votes |
def clock(): return cv2.getTickCount() / cv2.getTickFrequency()
Example #29
Source File: common.py From Traffic-Sign-Detection with MIT License | 5 votes |
def clock(): return cv2.getTickCount() / cv2.getTickFrequency()
Example #30
Source File: run.py From KCF-DSST-py with MIT License | 5 votes |
def tracker(cam, frame, bbox): tracker = KCFTracker(True, True, True) # (hog, fixed_Window, multi_scale) tracker.init(bbox, frame) while True: ok, frame = cam.read() timer = cv2.getTickCount() bbox = tracker.update(frame) bbox = list(map(int, bbox)) fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer) # Tracking success p1 = (int(bbox[0]), int(bbox[1])) p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3])) cv2.rectangle(frame, p1, p2, (255, 0, 0), 2, 1) # Put FPS cv2.putText(frame, "FPS : " + str(int(fps)), (100, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50, 170, 50), 2) cv2.imshow("Tracking", frame) # Exit if ESC pressed k = cv2.waitKey(1) & 0xff if k == 27: break cam.release() cv2.destroyAllWindows()