Python cv2.COLORMAP_JET Examples
The following are 30
code examples of cv2.COLORMAP_JET().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: vis_utils.py From pytorch-ppn with MIT License | 6 votes |
def vis_gaussian_maps(im, gaussian_maps, stride, save_im=False, save_path='./exps/preds/vis_results/gaussian_map_on_im.jpg'): # print 'Visualize gaussian maps' gm_num = gaussian_maps.shape[0] plot_grid_size = np.ceil(np.sqrt(gm_num)) for gmi in range(0, gm_num): gaussian_map = gaussian_maps[gmi, :, :].copy() if gaussian_map.max() > 0: gaussian_map -= gaussian_map.min() gaussian_map /= gaussian_map.max() resized_gaussian_map = gaussian_map * 255 resized_gaussian_map = cv2.resize(resized_gaussian_map, None, fx=stride, fy=stride, interpolation=cv2.INTER_LINEAR) resized_gaussian_map = resized_gaussian_map.astype(np.uint8) resized_gaussian_map = cv2.applyColorMap(resized_gaussian_map, cv2.COLORMAP_JET) vis_gaussian_map_im = cv2.addWeighted(resized_gaussian_map, 0.5, im.astype(np.uint8), 0.5, 0.0); plt.subplot(plot_grid_size, plot_grid_size, gmi + 1), plt.imshow(vis_gaussian_map_im[:, :, [2, 1, 0]]), plt.title(joint_names[gmi], **{'size':'10'}) plt.xticks([]) plt.yticks([]) plt.subplots_adjust(top=0.92, bottom=0.08, left=0.05, right=0.95, hspace=0.35, wspace=0.15) if save_im: plt.savefig(save_path)
Example #2
Source File: wrapper.py From THOR with MIT License | 6 votes |
def _show_modulate(im, score_viz): """ show the current activations on top of the current crop """ if score_viz is None: return # modulation is not active im = cv2.resize(im, (MEDIATE_SIZE, MEDIATE_SIZE)).astype(np.uint8) canvas = np.zeros([im.shape[0], im.shape[1], 3], dtype=np.uint8) # calculate the color map score_im_base = cv2.resize(score_viz[0], im.shape[:2]) score_im_base = (255*score_im_base).astype(np.uint8) im_color = cv2.applyColorMap(score_im_base, cv2.COLORMAP_JET) # show the image overlayed_im = cv2.addWeighted(im, 0.8, im_color, 0.7, 0) canvas[:, :im.shape[1], :] = overlayed_im cv2.imshow('modulated', canvas) cv2.moveWindow('modulated', 1200, 800)
Example #3
Source File: my.py From 3D-HourGlass-Network with MIT License | 6 votes |
def test_heatmaps(heatmaps,img,i): heatmaps=heatmaps.numpy() #heatmaps=np.squeeze(heatmaps) heatmaps=heatmaps[:,:64,:] heatmaps=heatmaps.transpose(1,2,0) print('heatmap inside shape is',heatmaps.shape) ## print('----------------here') ## print(heatmaps.shape) img=img.numpy() #img=np.squeeze(img) img=img.transpose(1,2,0) img=cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # print('heatmaps',heatmaps.shape) heatmaps = cv2.resize(heatmaps,(0,0), fx=4,fy=4) # print('heatmapsafter',heatmaps.shape) for j in range(0, 16): heatmap = heatmaps[:,:,j] heatmap = heatmap.reshape((256,256,1)) heatmapimg = np.array(heatmap * 255, dtype = np.uint8) heatmap = cv2.applyColorMap(heatmapimg, cv2.COLORMAP_JET) heatmap = heatmap/255 plt.imshow(img) plt.imshow(heatmap, alpha=0.5) plt.show() #plt.savefig('hmtestpadh36'+str(i)+js[j]+'.png')
Example #4
Source File: grad_cam.py From Emotion with MIT License | 6 votes |
def calculate_gradient_weighted_CAM(gradient_function, image): output, evaluated_gradients = gradient_function([image, False]) output, evaluated_gradients = output[0, :], evaluated_gradients[0, :, :, :] weights = np.mean(evaluated_gradients, axis = (0, 1)) CAM = np.ones(output.shape[0 : 2], dtype=np.float32) for weight_arg, weight in enumerate(weights): CAM = CAM + (weight * output[:, :, weight_arg]) CAM = cv2.resize(CAM, (64, 64)) CAM = np.maximum(CAM, 0) heatmap = CAM / np.max(CAM) #Return to BGR [0..255] from the preprocessed image image = image[0, :] image = image - np.min(image) image = np.minimum(image, 255) CAM = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET) CAM = np.float32(CAM) + np.float32(image) CAM = 255 * CAM / np.max(CAM) return np.uint8(CAM), heatmap
Example #5
Source File: trial.py From Pytorch-Human-Pose-Estimation with MIT License | 6 votes |
def draw_heatmaps(heatmaps, image, index): img = image #print(img.max(), img.min(), img.std(), img.mean()) img = np.array(255*img.transpose(1, 2, 0), dtype = np.uint8) #img = cv2.resize(img, (heatmaps.shape[1], heatmaps.shape[1])) #print(img.shape, img.max(), img.min(), img.mean(), img.std()) #print(img.shape) #print(heatmaps.shape[0]) for i in range(heatmaps.shape[0]): #current = cv2.applyColorMap(heatmaps[i, :, :], cv2.COLORMAP_JET) current = heatmaps[i, :, :] current = cv2.resize(current, (img.shape[0], img.shape[1])) #print(current.shape) #print(current.mean()) #print(current.std()) #print(img.max()) plt.imshow(img) plt.imshow(current, alpha = 0.5) plt.savefig('debug/' + str(index) + '_' + str(i) + '.png') print("saved", str(index))
Example #6
Source File: grad_cam.py From face_classification with MIT License | 6 votes |
def calculate_gradient_weighted_CAM(gradient_function, image): output, evaluated_gradients = gradient_function([image, False]) output, evaluated_gradients = output[0, :], evaluated_gradients[0, :, :, :] weights = np.mean(evaluated_gradients, axis=(0, 1)) CAM = np.ones(output.shape[0: 2], dtype=np.float32) for weight_arg, weight in enumerate(weights): CAM = CAM + (weight * output[:, :, weight_arg]) CAM = cv2.resize(CAM, (64, 64)) CAM = np.maximum(CAM, 0) heatmap = CAM / np.max(CAM) # Return to BGR [0..255] from the preprocessed image image = image[0, :] image = image - np.min(image) image = np.minimum(image, 255) CAM = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET) CAM = np.float32(CAM) + np.float32(image) CAM = 255 * CAM / np.max(CAM) return np.uint8(CAM), heatmap
Example #7
Source File: vis.py From HigherHRNet-Human-Pose-Estimation with MIT License | 6 votes |
def make_heatmaps(image, heatmaps): heatmaps = heatmaps.mul(255)\ .clamp(0, 255)\ .byte()\ .cpu().numpy() num_joints, height, width = heatmaps.shape image_resized = cv2.resize(image, (int(width), int(height))) image_grid = np.zeros((height, (num_joints+1)*width, 3), dtype=np.uint8) for j in range(num_joints): # add_joints(image_resized, joints[:, j, :]) heatmap = heatmaps[j, :, :] colored_heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) image_fused = colored_heatmap*0.7 + image_resized*0.3 width_begin = width * (j+1) width_end = width * (j+2) image_grid[:, width_begin:width_end, :] = image_fused image_grid[:, 0:width, :] = image_resized return image_grid
Example #8
Source File: my.py From 3D-HourGlass-Network with MIT License | 6 votes |
def test_heatmaps(heatmaps,img,i): heatmaps=heatmaps.numpy() #heatmaps=np.squeeze(heatmaps) heatmaps=heatmaps[:,:64,:] heatmaps=heatmaps.transpose(1,2,0) print('heatmap inside shape is',heatmaps.shape) ## print('----------------here') ## print(heatmaps.shape) img=img.numpy() #img=np.squeeze(img) img=img.transpose(1,2,0) img=cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # print('heatmaps',heatmaps.shape) heatmaps = cv2.resize(heatmaps,(0,0), fx=4,fy=4) # print('heatmapsafter',heatmaps.shape) for j in range(0, 16): heatmap = heatmaps[:,:,j] heatmap = heatmap.reshape((256,256,1)) heatmapimg = np.array(heatmap * 255, dtype = np.uint8) heatmap = cv2.applyColorMap(heatmapimg, cv2.COLORMAP_JET) heatmap = heatmap/255 plt.imshow(img) plt.imshow(heatmap, alpha=0.5) plt.show() #plt.savefig('hmtestpadh36'+str(i)+js[j]+'.png')
Example #9
Source File: h5_test.py From keras-image-segmentation with MIT License | 6 votes |
def read_h5py_example(): h5_in = h5py.File(os.path.join(dir_path, 'data.h5'), 'r') print (h5_in.keys()) print (h5_in['train']['image'].dtype) print (h5_in['train']['image'][0].shape) image_size = h5_in['train']['image'].attrs['size'] label_size = h5_in['train']['label'].attrs['size'] x_img = np.reshape(h5_in['train']['image'][0], tuple(image_size)) y_img = np.reshape(h5_in['train']['label'][0], tuple(label_size)) name = h5_in['train']['name'][0] print (name) y_img = (y_img.astype(np.float32)*255/33).astype(np.uint8) y_show = cv2.applyColorMap(y_img, cv2.COLORMAP_JET) show = cv2.addWeighted(x_img, 0.5, y_show, 0.5, 0) cv2.imshow("show", show) cv2.waitKey()
Example #10
Source File: h5_test.py From keras-image-segmentation with MIT License | 6 votes |
def image_copy_to_dir(mode, x_paths, y_paths): target_path = '/run/media/tkwoo/myWorkspace/workspace/01.dataset/03.Mask_data/cityscape' target_path = os.path.join(target_path, mode) for idx in trange(len(x_paths)): image = cv2.imread(x_paths[idx], 1) mask = cv2.imread(y_paths[idx], 0) image = cv2.resize(image, None, fx=0.25, fy=0.25, interpolation=cv2.INTER_LINEAR) mask = cv2.resize(mask, None, fx=0.25, fy=0.25, interpolation=cv2.INTER_NEAREST) cv2.imwrite(os.path.join(target_path, 'image', os.path.basename(x_paths[idx])), image) cv2.imwrite(os.path.join(target_path, 'mask', os.path.basename(y_paths[idx])), mask) # show = image.copy() # mask = (mask.astype(np.float32)*255/33).astype(np.uint8) # mask_color = cv2.applyColorMap(mask, cv2.COLORMAP_JET) # show = cv2.addWeighted(show, 0.5, mask_color, 0.5, 0.0) # cv2.imshow('show', show) # key = cv2.waitKey(1) # if key == 27: # return
Example #11
Source File: utils.py From PPGNet with MIT License | 6 votes |
def draw_lines(imgs, lines, scores=None, width=2): assert len(imgs) == len(lines) imgs = np.uint8(imgs) bs = len(imgs) if scores is not None: assert len(scores) == bs res = [] for b in range(bs): img = imgs[b].transpose((1, 2, 0)) line = lines[b] if scores is None: score = np.zeros(len(line)) else: score = scores[b] img = img.copy() for (x1, y1, x2, y2), c in zip(line, score): pt1, pt2 = (x1, y1), (x2, y2) c = tuple(cv2.applyColorMap(np.array(c * 255, dtype=np.uint8), cv2.COLORMAP_JET).flatten().tolist()) img = cv2.line(img, pt1, pt2, c, width) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) res.append(th.from_numpy(img.transpose((2, 0, 1)))) return res
Example #12
Source File: train.py From keras-image-segmentation with MIT License | 6 votes |
def train_generator(self, image_generator, mask_generator): # cv2.namedWindow('show', 0) # cv2.resizeWindow('show', 1280, 640) while True: image = next(image_generator) mask = next(mask_generator) label = self.make_regressor_label(mask).astype(np.float32) # print (image.dtype, label.dtype) # print (image.shape, label.shape) # exit() # cv2.imshow('show', image[0].astype(np.uint8)) # cv2.imshow('label', label[0].astype(np.uint8)) # mask = self.select_labels(mask) # print (image.shape) # print (mask.shape) # image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # mask = (mask.astype(np.float32)*255/33).astype(np.uint8) # mask_color = cv2.applyColorMap(mask, cv2.COLORMAP_JET) # print (mask_color.shape) # show = cv2.addWeighted(image, 0.5, mask_color, 0.5, 0.0) # cv2.imshow("show", show) # key = cv2.waitKey() # if key == 27: # exit() yield (image, label)
Example #13
Source File: grad_cam.py From Face-and-Emotion-Recognition with MIT License | 6 votes |
def calculate_gradient_weighted_CAM(gradient_function, image): output, evaluated_gradients = gradient_function([image, False]) output, evaluated_gradients = output[0, :], evaluated_gradients[0, :, :, :] weights = np.mean(evaluated_gradients, axis = (0, 1)) CAM = np.ones(output.shape[0 : 2], dtype=np.float32) for weight_arg, weight in enumerate(weights): CAM = CAM + (weight * output[:, :, weight_arg]) CAM = cv2.resize(CAM, (64, 64)) CAM = np.maximum(CAM, 0) heatmap = CAM / np.max(CAM) #Return to BGR [0..255] from the preprocessed image image = image[0, :] image = image - np.min(image) image = np.minimum(image, 255) CAM = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET) CAM = np.float32(CAM) + np.float32(image) CAM = 255 * CAM / np.max(CAM) return np.uint8(CAM), heatmap
Example #14
Source File: system.py From sips2_open with GNU General Public License v3.0 | 6 votes |
def render(self, n_max=0, fallback_im=None): if self.image_scores is not None: im = cv2.applyColorMap((self.image_scores * 255).astype(np.uint8), cv2.COLORMAP_JET) else: assert fallback_im is not None im = cv2.cvtColor(fallback_im, cv2.COLOR_GRAY2BGR) if n_max == 0: n_max = self.ips_rc.shape[1] for i in range(n_max): thickness_relevant_score = \ np.clip(self.ip_scores[i], 0.2, 0.6) - 0.2 thickness = int(thickness_relevant_score * 20) if type(self.scales) == np.ndarray: radius = int(self.scales[i] * 10) else: radius = 10 cv2.circle(im, tuple(self.ips_rc[[1, 0], i]), radius, (0, 255, 0), thickness, cv2.LINE_AA) return im
Example #15
Source File: vis_utils.py From pytorch-pil with MIT License | 6 votes |
def vis_gaussian_maps(im, gaussian_maps, stride, save_im=False, save_path='exps/preds/vis_results/gaussian_map_on_im.jpg'): #print 'Visualize gaussian maps' gm_num = gaussian_maps.shape[0] plot_grid_size = np.ceil(np.sqrt(gm_num)) for gmi in range(0, gm_num): gaussian_map = gaussian_maps[gmi, :, :].copy() if gaussian_map.max() > 0: gaussian_map -= gaussian_map.min() gaussian_map /= gaussian_map.max() resized_gaussian_map = gaussian_map * 255 resized_gaussian_map = cv2.resize(resized_gaussian_map, None, fx=stride, fy=stride, interpolation=cv2.INTER_LINEAR) resized_gaussian_map = resized_gaussian_map.astype(np.uint8) resized_gaussian_map = cv2.applyColorMap(resized_gaussian_map, cv2.COLORMAP_JET) vis_gaussian_map_im = cv2.addWeighted(resized_gaussian_map, 0.5, im.astype(np.uint8), 0.5, 0.0); plt.subplot(plot_grid_size, plot_grid_size, gmi + 1),plt.imshow(vis_gaussian_map_im[:, :, [2, 1, 0]]), plt.title(joint_names[gmi]) plt.xticks([]) plt.yticks([]) if save_im: plt.savefig(save_path)
Example #16
Source File: run.py From keras-steering-angle-visualizations with MIT License | 6 votes |
def visualize_hypercolumns(model, original_img): img = np.float32(cv2.resize(original_img, (200, 66))) / 255.0 layers_extract = [9] hc = extract_hypercolumns(model, layers_extract, img) avg = np.product(hc, axis=0) avg = np.abs(avg) avg = avg / np.max(np.max(avg)) heatmap = cv2.applyColorMap(np.uint8(255 * avg), cv2.COLORMAP_JET) heatmap = np.float32(heatmap) / np.max(np.max(heatmap)) heatmap = cv2.resize(heatmap, original_img.shape[0:2][::-1]) both = 255 * heatmap * 0.7 + original_img both = both / np.max(both) return both
Example #17
Source File: sips_system.py From imips_open with GNU General Public License v3.0 | 6 votes |
def render(self, n_max=0, fallback_im=None): if self.image_scores is not None: im = cv2.applyColorMap((self.image_scores * 255).astype(np.uint8), cv2.COLORMAP_JET) else: assert fallback_im is not None im = cv2.cvtColor(fallback_im, cv2.COLOR_GRAY2BGR) if n_max == 0: n_max = self.ips_rc.shape[1] for i in range(n_max): thickness_relevant_score = \ np.clip(self.ip_scores[i], 0.2, 0.6) - 0.2 thickness = int(thickness_relevant_score * 20) if type(self.scales) == np.ndarray: radius = int(self.scales[i] * 10) else: radius = 10 cv2.circle(im, tuple(self.ips_rc[[1, 0], i]), radius, (0, 255, 0), thickness, cv2.LINE_AA) return im
Example #18
Source File: plot_utils.py From imips_open with GNU General Public License v3.0 | 6 votes |
def tile(net_outs, rows, cols, downscale, ips_rc=None): assert net_outs.shape[2] == 128 xdim = net_outs.shape[1] ydim = net_outs.shape[0] im = np.zeros([rows * ydim, cols * xdim, 3]) for r in range(rows): for c in range(cols): im_i = cv2.applyColorMap( (net_outs[:, :, r * cols + c] * 255).astype(np.uint8), cv2.COLORMAP_JET) if ips_rc is not None: cv2.circle(im_i, tuple(ips_rc[[1, 0], r * cols + c]), downscale * 5, (0, 0, 0), downscale * 3, cv2.LINE_AA) im[r * ydim:(r + 1) * ydim, c * xdim:(c + 1) * xdim, :] = im_i return skimage.measure.block_reduce(im, (downscale, downscale, 1), np.max)
Example #19
Source File: train.py From SceneChangeDet with MIT License | 6 votes |
def single_layer_similar_heatmap_visual(output_t0,output_t1,save_change_map_dir,epoch,filename,layer_flag,dist_flag): interp = nn.Upsample(size=[cfg.TRANSFROM_SCALES[1],cfg.TRANSFROM_SCALES[0]], mode='bilinear') n, c, h, w = output_t0.data.shape out_t0_rz = torch.transpose(output_t0.view(c, h * w), 1, 0) out_t1_rz = torch.transpose(output_t1.view(c, h * w), 1, 0) distance = various_distance(out_t0_rz,out_t1_rz,dist_flag=dist_flag) similar_distance_map = distance.view(h,w).data.cpu().numpy() similar_distance_map_rz = interp(Variable(torch.from_numpy(similar_distance_map[np.newaxis, np.newaxis, :]))) similar_dis_map_colorize = cv2.applyColorMap(np.uint8(255 * similar_distance_map_rz.data.cpu().numpy()[0][0]), cv2.COLORMAP_JET) save_change_map_dir_ = os.path.join(save_change_map_dir, 'epoch_' + str(epoch)) check_dir(save_change_map_dir_) save_change_map_dir_layer = os.path.join(save_change_map_dir_,layer_flag) check_dir(save_change_map_dir_layer) save_weight_fig_dir = os.path.join(save_change_map_dir_layer, filename + '.jpg') cv2.imwrite(save_weight_fig_dir, similar_dis_map_colorize) return similar_distance_map_rz.data.cpu().numpy()
Example #20
Source File: utils.py From SceneChangeDet with MIT License | 6 votes |
def various_scale_attention_weights_visualize(spatial_weights,original_img1,original_img2,save_base_path,filename): nchannel, height,width = spatial_weights.shape scale_list = ['common','t0','t1'] original_imgs = [original_img1,original_img1,original_img2] assert len(scale_list) == len(spatial_weights) for idx in range(nchannel): height_img, width_img, channel = original_imgs[idx].shape scale_x = spatial_weights[idx] scale_name = scale_list[idx] scalex_x_att_map = cv2.resize(scale_x,(width_img,height_img),interpolation=cv2.INTER_LINEAR) scalex_x_att_map_ = cv2.applyColorMap(np.uint8(255* scalex_x_att_map),cv2.COLORMAP_JET) fuse_scale_att_map = 0.6 * scalex_x_att_map_ + 0.4 * original_imgs[idx] cv2.imwrite(save_base_path + '_' + str(filename) + '_origin_' + str(scale_name) + '.jpg', scalex_x_att_map_) cv2.imwrite(save_base_path + '_' + str(filename) + '_fuse_' + str(scale_name) + '.jpg', fuse_scale_att_map)
Example #21
Source File: CThermal.py From Thermal_Image_Analysis with MIT License | 6 votes |
def get_scaled_image(self, img, thermal_np, raw_thermal_np, cmap=cv.COLORMAP_JET, is_rect=False ) : self.scale_contours = [] CFlir.contour=[] CFlir.get_contours(img, self.scale_contours) flag = False if len (self.scale_contours) > 0: if len(self.scale_contours[0]) > 15: flag = True thermal_roi_values = CFlir.get_roi(img, thermal_np, raw_thermal_np, self.scale_contours, 0)[1] temp_scaled = CFlir.scale_with_roi(thermal_np, thermal_roi_values) temp_scaled_image = CFlir.get_temp_image(temp_scaled, colormap=cmap) if flag == False: temp_scaled = thermal_np.copy() temp_scaled_image = CFlir.get_temp_image(temp_scaled, colormap=cmap) return temp_scaled , temp_scaled_image
Example #22
Source File: CThermal.py From Thermal_Image_Analysis with MIT License | 6 votes |
def line_measurement(self, image, thermal_np, cmap=cv.COLORMAP_JET): img = image.copy() line, point1, point2 = CFlir.get_line(img) line_temps = np.zeros(len(line)) if len(img.shape) == 3: gray_values = np.arange(256, dtype=np.uint8) color_values = map(tuple, cv.applyColorMap(gray_values, cmap).reshape(256, 3)) color_to_gray_map = dict(zip(color_values, gray_values)) img = np.apply_along_axis(lambda bgr: color_to_gray_map[tuple(bgr)], 2, image) for i in range(0,len(line)): line_temps[i] = thermal_np[ line[i][1], line[i][0] ] cv.line(img, point1, point2, 255, 2, 8) plt.subplot(1, 5, (1,2) ) plt.imshow(img, cmap='jet') plt.title('Image') plt.subplot(1, 5, (4,5) ) plt.plot(line_temps) plt.title('Distance vs Temperature') plt.show() logger.info(f'\nMin line: {np.amin(line_temps)}\nMax line: {np.amax(line_temps)}' )
Example #23
Source File: visualization.py From SSENet-pytorch with MIT License | 6 votes |
def color_pro(pro, img=None, mode='hwc'): H, W = pro.shape pro_255 = (pro*255).astype(np.uint8) pro_255 = np.expand_dims(pro_255,axis=2) color = cv2.applyColorMap(pro_255,cv2.COLORMAP_JET) color = cv2.cvtColor(color, cv2.COLOR_BGR2RGB) if img is not None: rate = 0.5 if mode == 'hwc': assert img.shape[0] == H and img.shape[1] == W color = cv2.addWeighted(img,rate,color,1-rate,0) elif mode == 'chw': assert img.shape[1] == H and img.shape[2] == W img = np.transpose(img,(1,2,0)) color = cv2.addWeighted(img,rate,color,1-rate,0) color = np.transpose(color,(2,0,1)) else: if mode == 'chw': color = np.transpose(color,(2,0,1)) return color
Example #24
Source File: CThermal.py From Thermal_Image_Analysis with MIT License | 6 votes |
def generate_colorbar(self, min_temp=None, max_temp=None, cmap=cv.COLORMAP_JET, height=None): if min_temp is None: min_temp = self.global_min_temp if max_temp is None: max_temp = self.global_max_temp cb_gray = np.arange(255,0,-1,dtype=np.uint8).reshape((255,1)) if cmap is not None: cb_color = cv.applyColorMap(cb_gray, cmap) else: cb_color = cv.cvtColor(cb_gray, cv.COLOR_GRAY2BGR) for i in range(1,6): cb_color = np.concatenate( (cb_color, cb_color), axis=1 ) if height is None: append_img = np.zeros( (self.thermal_image.shape[0], cb_color.shape[1]+30, 3), dtype=np.uint8 ) else: append_img = np.zeros( (height, cb_color.shape[1]+30, 3), dtype=np.uint8 ) append_img[append_img.shape[0]//2-cb_color.shape[0]//2 : append_img.shape[0]//2 - (cb_color.shape[0]//2) + cb_color.shape[0] , 10 : 10 + cb_color.shape[1] ] = cb_color cv.putText(append_img, str(min_temp), (5, append_img.shape[0]//2 - (cb_color.shape[0]//2) + cb_color.shape[0] + 30), cv.FONT_HERSHEY_PLAIN, 1, (255,0,0) , 1, 8) cv.putText(append_img, str(max_temp), (5, append_img.shape[0]//2-cb_color.shape[0]//2-20) , cv.FONT_HERSHEY_PLAIN, 1, (0,0,255) , 1, 8 ) return append_img
Example #25
Source File: predictor.py From EmbedMask with MIT License | 5 votes |
def create_mask_montage(self, image, predictions): """ Create a montage showing the probability heatmaps for each one one of the detected objects Arguments: image (np.ndarray): an image as returned by OpenCV predictions (BoxList): the result of the computation by the model. It should contain the field `mask`. """ masks = predictions.get_field("mask") masks_per_dim = self.masks_per_dim masks = L.interpolate( masks.float(), scale_factor=1 / masks_per_dim ).byte() height, width = masks.shape[-2:] max_masks = masks_per_dim ** 2 masks = masks[:max_masks] # handle case where we have less detections than max_masks if len(masks) < max_masks: masks_padded = torch.zeros(max_masks, 1, height, width, dtype=torch.uint8) masks_padded[: len(masks)] = masks masks = masks_padded masks = masks.reshape(masks_per_dim, masks_per_dim, height, width) result = torch.zeros( (masks_per_dim * height, masks_per_dim * width), dtype=torch.uint8 ) for y in range(masks_per_dim): start_y = y * height end_y = (y + 1) * height for x in range(masks_per_dim): start_x = x * width end_x = (x + 1) * width result[start_y:end_y, start_x:end_x] = masks[y, x] return cv2.applyColorMap(result.numpy(), cv2.COLORMAP_JET)
Example #26
Source File: CThermal.py From Thermal_Image_Analysis with MIT License | 5 votes |
def get_temp_image(thermal_np, colormap=cv.COLORMAP_JET): thermal_np_norm = CFlir.normalize(thermal_np) thermal_image = np.array(thermal_np_norm*255, dtype=np.uint8) if colormap != None: thermal_image = cv.applyColorMap(thermal_image, colormap) return thermal_image
Example #27
Source File: predictor.py From HRNet-MaskRCNN-Benchmark with MIT License | 5 votes |
def create_mask_montage(self, image, predictions): """ Create a montage showing the probability heatmaps for each one one of the detected objects Arguments: image (np.ndarray): an image as returned by OpenCV predictions (BoxList): the result of the computation by the model. It should contain the field `mask`. """ masks = predictions.get_field("mask") masks_per_dim = self.masks_per_dim masks = torch.nn.functional.interpolate( masks.float(), scale_factor=1 / masks_per_dim ).byte() height, width = masks.shape[-2:] max_masks = masks_per_dim ** 2 masks = masks[:max_masks] # handle case where we have less detections than max_masks if len(masks) < max_masks: masks_padded = torch.zeros(max_masks, 1, height, width, dtype=torch.uint8) masks_padded[: len(masks)] = masks masks = masks_padded masks = masks.reshape(masks_per_dim, masks_per_dim, height, width) result = torch.zeros( (masks_per_dim * height, masks_per_dim * width), dtype=torch.uint8 ) for y in range(masks_per_dim): start_y = y * height end_y = (y + 1) * height for x in range(masks_per_dim): start_x = x * width end_x = (x + 1) * width result[start_y:end_y, start_x:end_x] = masks[y, x] return cv2.applyColorMap(result.numpy(), cv2.COLORMAP_JET)
Example #28
Source File: 6_dm_video.py From stereopi-tutorial with GNU General Public License v3.0 | 5 votes |
def stereo_depth_map(rectified_pair): dmLeft = rectified_pair[0] dmRight = rectified_pair[1] disparity = sbm.compute(dmLeft, dmRight) local_max = disparity.max() local_min = disparity.min() disparity_grayscale = (disparity-local_min)*(65535.0/(local_max-local_min)) disparity_fixtype = cv2.convertScaleAbs(disparity_grayscale, alpha=(255.0/65535.0)) disparity_color = cv2.applyColorMap(disparity_fixtype, cv2.COLORMAP_JET) cv2.imshow("Image", disparity_color) key = cv2.waitKey(1) & 0xFF if key == ord("q"): quit(); return disparity_color
Example #29
Source File: imgproc.py From CRAFT-pytorch with MIT License | 5 votes |
def cvt2HeatmapImg(img): img = (np.clip(img, 0, 1) * 255).astype(np.uint8) img = cv2.applyColorMap(img, cv2.COLORMAP_JET) return img
Example #30
Source File: denseNet_localization.py From CheXNet-with-localization with GNU General Public License v3.0 | 5 votes |
def save(self, filename, gcam, raw_image): gcam = cv2.applyColorMap(np.uint8(gcam * 255.0), cv2.COLORMAP_JET) gcam = gcam.astype(np.float) + raw_image.astype(np.float) gcam = gcam / gcam.max() * 255.0 cv2.imwrite(filename, np.uint8(gcam)) # ======== Create heatmap ===========