Python cv2.CV_32FC1 Examples

The following are 9 code examples of cv2.CV_32FC1(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module cv2 , or try the search function .
Example #1
Source File: utils.py    From cvcalib with Apache License 2.0 7 votes vote down vote up
def compute_stereo_rectification_maps(stereo_rig, im_size, size_factor):
    new_size = (int(im_size[1] * size_factor), int(im_size[0] * size_factor))
    rotation1, rotation2, pose1, pose2 = \
        cv2.stereoRectify(cameraMatrix1=stereo_rig.cameras[0].intrinsics.intrinsic_mat,
                          distCoeffs1=stereo_rig.cameras[0].intrinsics.distortion_coeffs,
                          cameraMatrix2=stereo_rig.cameras[1].intrinsics.intrinsic_mat,
                          distCoeffs2=stereo_rig.cameras[1].intrinsics.distortion_coeffs,
                          imageSize=(im_size[1], im_size[0]),
                          R=stereo_rig.cameras[1].extrinsics.rotation,
                          T=stereo_rig.cameras[1].extrinsics.translation,
                          flags=cv2.CALIB_ZERO_DISPARITY,
                          newImageSize=new_size
                          )[0:4]
    map1x, map1y = cv2.initUndistortRectifyMap(stereo_rig.cameras[0].intrinsics.intrinsic_mat,
                                               stereo_rig.cameras[0].intrinsics.distortion_coeffs,
                                               rotation1, pose1, new_size, cv2.CV_32FC1)
    map2x, map2y = cv2.initUndistortRectifyMap(stereo_rig.cameras[1].intrinsics.intrinsic_mat,
                                               stereo_rig.cameras[1].intrinsics.distortion_coeffs,
                                               rotation2, pose2, new_size, cv2.CV_32FC1)
    return map1x, map1y, map2x, map2y 
Example #2
Source File: functional.py    From albumentations with MIT License 6 votes vote down vote up
def optical_distortion(
    img, k=0, dx=0, dy=0, interpolation=cv2.INTER_LINEAR, border_mode=cv2.BORDER_REFLECT_101, value=None
):
    """Barrel / pincushion distortion. Unconventional augment.

    Reference:
        |  https://stackoverflow.com/questions/6199636/formulas-for-barrel-pincushion-distortion
        |  https://stackoverflow.com/questions/10364201/image-transformation-in-opencv
        |  https://stackoverflow.com/questions/2477774/correcting-fisheye-distortion-programmatically
        |  http://www.coldvision.io/2017/03/02/advanced-lane-finding-using-opencv/
    """
    height, width = img.shape[:2]

    fx = width
    fy = height

    cx = width * 0.5 + dx
    cy = height * 0.5 + dy

    camera_matrix = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=np.float32)

    distortion = np.array([k, k, 0, 0, 0], dtype=np.float32)
    map1, map2 = cv2.initUndistortRectifyMap(camera_matrix, distortion, None, None, (width, height), cv2.CV_32FC1)
    img = cv2.remap(img, map1, map2, interpolation=interpolation, borderMode=border_mode, borderValue=value)
    return img 
Example #3
Source File: transforms.py    From kaggle_carvana_segmentation with MIT License 5 votes vote down vote up
def __call__(self, img, mask=None):
        if random.random() < self.prob:
            height, width, channel = img.shape

            if 0:
                img = img.copy()
                for x in range(0, width, 10):
                    cv2.line(img, (x, 0), (x, height), (1, 1, 1), 1)
                for y in range(0, height, 10):
                    cv2.line(img, (0, y), (width, y), (1, 1, 1), 1)

            k = random.uniform(-self.distort_limit, self.distort_limit) * 0.00001
            dx = random.uniform(-self.shift_limit, self.shift_limit) * width
            dy = random.uniform(-self.shift_limit, self.shift_limit) * height

            #  map_x, map_y =
            # cv2.initUndistortRectifyMap(intrinsics, dist_coeffs, None, None, (width,height),cv2.CV_32FC1)
            # https://stackoverflow.com/questions/6199636/formulas-for-barrel-pincushion-distortion
            # https://stackoverflow.com/questions/10364201/image-transformation-in-opencv
            x, y = np.mgrid[0:width:1, 0:height:1]
            x = x.astype(np.float32) - width/2 - dx
            y = y.astype(np.float32) - height/2 - dy
            theta = np.arctan2(y, x)
            d = (x*x + y*y)**0.5
            r = d*(1+k*d*d)
            map_x = r*np.cos(theta) + width/2 + dx
            map_y = r*np.sin(theta) + height/2 + dy

            img = cv2.remap(img, map_x, map_y, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101)
            if mask is not None:
                mask = cv2.remap(mask, map_x, map_y, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101)
        return img, mask 
Example #4
Source File: blob_detect.py    From pc-drone with MIT License 5 votes vote down vote up
def init_undistort():
    #cv2.initUndistortRectifyMap(cameraMatrix, distCoeffs, R, newCameraMatrix, size, m1type[, map1[, map2]]) -> map1, map2
    frame_size=(640,480)
    map1, map2=cv2.initUndistortRectifyMap(mtx, dist, None, newcameramtx, frame_size, cv2.CV_32FC1)
    return map1, map2
   
# this is a faster undistort_crop that only does remapping. Requires call to init_undistort first to
# to create the map1 and map2 
Example #5
Source File: functional.py    From dsb2018_topcoders with MIT License 5 votes vote down vote up
def distort1(img, k=0, dx=0, dy=0):
    """"
    ## unconverntional augmnet ################################################################################3
    ## https://stackoverflow.com/questions/6199636/formulas-for-barrel-pincushion-distortion

    ## https://stackoverflow.com/questions/10364201/image-transformation-in-opencv
    ## https://stackoverflow.com/questions/2477774/correcting-fisheye-distortion-programmatically
    ## http://www.coldvision.io/2017/03/02/advanced-lane-finding-using-opencv/

    ## barrel\pincushion distortion
    """
    height, width = img.shape[:2]
    #  map_x, map_y =
    # cv2.initUndistortRectifyMap(intrinsics, dist_coeffs, None, None, (width,height),cv2.CV_32FC1)
    # https://stackoverflow.com/questions/6199636/formulas-for-barrel-pincushion-distortion
    # https://stackoverflow.com/questions/10364201/image-transformation-in-opencv
    k = k * 0.00001
    dx = dx * width
    dy = dy * height
    x, y = np.mgrid[0:width:1, 0:height:1]
    x = x.astype(np.float32) - width/2 - dx
    y = y.astype(np.float32) - height/2 - dy
    theta = np.arctan2(y, x)
    d = (x*x + y*y)**0.5
    r = d*(1+k*d*d)
    map_x = r*np.cos(theta) + width/2 + dx
    map_y = r*np.sin(theta) + height/2 + dy

    img = cv2.remap(img, map_x, map_y, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101)
    return img 
Example #6
Source File: functional.py    From dsb2018_topcoders with MIT License 5 votes vote down vote up
def distort1(img, k=0, dx=0, dy=0):
    """"
    ## unconverntional augmnet ################################################################################3
    ## https://stackoverflow.com/questions/6199636/formulas-for-barrel-pincushion-distortion

    ## https://stackoverflow.com/questions/10364201/image-transformation-in-opencv
    ## https://stackoverflow.com/questions/2477774/correcting-fisheye-distortion-programmatically
    ## http://www.coldvision.io/2017/03/02/advanced-lane-finding-using-opencv/

    ## barrel\pincushion distortion
    """
    height, width = img.shape[:2]
    #  map_x, map_y =
    # cv2.initUndistortRectifyMap(intrinsics, dist_coeffs, None, None, (width,height),cv2.CV_32FC1)
    # https://stackoverflow.com/questions/6199636/formulas-for-barrel-pincushion-distortion
    # https://stackoverflow.com/questions/10364201/image-transformation-in-opencv
    k = k * 0.00001
    dx = dx * width
    dy = dy * height
    x, y = np.mgrid[0:width:1, 0:height:1]
    x = x.astype(np.float32) - width/2 - dx
    y = y.astype(np.float32) - height/2 - dy
    theta = np.arctan2(y, x)
    d = (x*x + y*y)**0.5
    r = d*(1+k*d*d)
    map_x = r*np.cos(theta) + width/2 + dx
    map_y = r*np.sin(theta) + height/2 + dy

    img = cv2.remap(img, map_x, map_y, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101)
    return img 
Example #7
Source File: functional.py    From dsb2018_topcoders with MIT License 5 votes vote down vote up
def distort1(img, k=0, dx=0, dy=0):
    """"
    ## unconverntional augmnet ################################################################################3
    ## https://stackoverflow.com/questions/6199636/formulas-for-barrel-pincushion-distortion

    ## https://stackoverflow.com/questions/10364201/image-transformation-in-opencv
    ## https://stackoverflow.com/questions/2477774/correcting-fisheye-distortion-programmatically
    ## http://www.coldvision.io/2017/03/02/advanced-lane-finding-using-opencv/

    ## barrel\pincushion distortion
    """
    height, width = img.shape[:2]
    #  map_x, map_y =
    # cv2.initUndistortRectifyMap(intrinsics, dist_coeffs, None, None, (width,height),cv2.CV_32FC1)
    # https://stackoverflow.com/questions/6199636/formulas-for-barrel-pincushion-distortion
    # https://stackoverflow.com/questions/10364201/image-transformation-in-opencv
    k = k * 0.00001
    dx = dx * width
    dy = dy * height
    x, y = np.mgrid[0:width:1, 0:height:1]
    x = x.astype(np.float32) - width/2 - dx
    y = y.astype(np.float32) - height/2 - dy
    theta = np.arctan2(y, x)
    d = (x*x + y*y)**0.5
    r = d*(1+k*d*d)
    map_x = r*np.cos(theta) + width/2 + dx
    map_y = r*np.sin(theta) + height/2 + dy

    img = cv2.remap(img, map_x, map_y, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101)
    return img 
Example #8
Source File: chessboard.py    From cvcalib with Apache License 2.0 5 votes vote down vote up
def __filter_candidate(greyscale_image, coord, neighborhood_size):
    window = greyscale_image[coord[0] - neighborhood_size:coord[0] + neighborhood_size + 1,
             coord[1] - neighborhood_size:coord[1] + neighborhood_size + 1]
    grad_x = cv2.Sobel(window, cv2.CV_32FC1, dx=1, dy=0, ksize=3)
    grad_y = cv2.Sobel(window, cv2.CV_32FC1, dx=0, dy=1, ksize=3)
    grad_mag = np.abs(grad_x) + np.abs(grad_y)
    grad_mag_flat = grad_mag.flatten()
    orientations_flat = (cv2.phase(grad_x, grad_y) % pi).flatten()  # phase accuracy: about 0.3 degrees
    hist = (np.histogram(orientations_flat, bins=64, range=(0, pi), weights=grad_mag_flat)[0] /
            (neighborhood_size * neighborhood_size))

    return hist, grad_mag 
Example #9
Source File: calibration.py    From StereoVision with GNU General Public License v3.0 4 votes vote down vote up
def calibrate_cameras(self):
        """Calibrate cameras based on found chessboard corners."""
        criteria = (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS,
                    100, 1e-5)
        flags = (cv2.CALIB_FIX_ASPECT_RATIO + cv2.CALIB_ZERO_TANGENT_DIST +
                 cv2.CALIB_SAME_FOCAL_LENGTH)
        calib = StereoCalibration()
        (calib.cam_mats["left"], calib.dist_coefs["left"],
         calib.cam_mats["right"], calib.dist_coefs["right"],
         calib.rot_mat, calib.trans_vec, calib.e_mat,
         calib.f_mat) = cv2.stereoCalibrate(self.object_points,
                                            self.image_points["left"],
                                            self.image_points["right"],
                                            self.image_size,
                                            calib.cam_mats["left"],
                                            calib.dist_coefs["left"],
                                            calib.cam_mats["right"],
                                            calib.dist_coefs["right"],
                                            calib.rot_mat,
                                            calib.trans_vec,
                                            calib.e_mat,
                                            calib.f_mat,
                                            criteria=criteria,
                                            flags=flags)[1:]
        (calib.rect_trans["left"], calib.rect_trans["right"],
         calib.proj_mats["left"], calib.proj_mats["right"],
         calib.disp_to_depth_mat, calib.valid_boxes["left"],
         calib.valid_boxes["right"]) = cv2.stereoRectify(calib.cam_mats["left"],
                                                      calib.dist_coefs["left"],
                                                      calib.cam_mats["right"],
                                                      calib.dist_coefs["right"],
                                                      self.image_size,
                                                      calib.rot_mat,
                                                      calib.trans_vec,
                                                      flags=0)
        for side in ("left", "right"):
            (calib.undistortion_map[side],
             calib.rectification_map[side]) = cv2.initUndistortRectifyMap(
                                                        calib.cam_mats[side],
                                                        calib.dist_coefs[side],
                                                        calib.rect_trans[side],
                                                        calib.proj_mats[side],
                                                        self.image_size,
                                                        cv2.CV_32FC1)
        # This is replaced because my results were always bad. Estimates are
        # taken from the OpenCV samples.
        width, height = self.image_size
        focal_length = 0.8 * width
        calib.disp_to_depth_mat = np.float32([[1, 0, 0, -0.5 * width],
                                              [0, -1, 0, 0.5 * height],
                                              [0, 0, 0, -focal_length],
                                              [0, 0, 1, 0]])
        return calib