Python cv2.FONT_HERSHEY_DUPLEX Examples
The following are 30
code examples of cv2.FONT_HERSHEY_DUPLEX().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: visualization.py From Gather-Deployment with MIT License | 6 votes |
def bboxes_draw_on_img(img, classes, scores, bboxes, thickness=2): shape = img.shape for i in range(bboxes.shape[0]): label = labels[classes[i] - 1] if label not in accept_labels: continue bbox = bboxes[i] #color = colors_tableau[classes[i] - 1] p1 = (int(bbox[0] * shape[0]), int(bbox[1] * shape[1])) p2 = (int(bbox[2] * shape[0]), int(bbox[3] * shape[1])) cv2.rectangle(img, p1[::-1], p2[::-1], (0,0,255), 1) s = '%s' % (label) p1 = (p1[0]-5, p1[1]) cv2.putText(img, s, p1[::-1], cv2.FONT_HERSHEY_DUPLEX, 0.7, (0,0,255), 1) # =========================================================================== # # Matplotlib show... # =========================================================================== #
Example #2
Source File: pascal_voc.py From transforms with MIT License | 6 votes |
def draw_bbox(self, img, bboxes, labels, relative=False): if len(labels) == 0: return img img = img.copy() h, w = img.shape[:2] if relative: bboxes = bboxes * [w, h, w, h] bboxes = bboxes.astype(np.int) labels = labels.astype(np.int) for bbox, label in zip(bboxes, labels): left, top, right, bot = bbox color = self.colors[label] label = self.id_to_label[label] cv2.rectangle(img, (left, top), (right, bot), color, 2) cv2.putText(img, label, (left+1, top-5), cv2.FONT_HERSHEY_DUPLEX, 0.4, color, 1, cv2.LINE_AA) return img
Example #3
Source File: main_window.py From smpl_viewer with MIT License | 6 votes |
def _draw_annotations(self, img): self.joints2d.set(t=self.camera.t, rt=self.camera.rt, f=self.camera.f, c=self.camera.c, k=self.camera.k) if self.view_bones.isChecked(): kintree = self.model.kintree_table[:, 1:] for k in range(kintree.shape[1]): cv2.line(img, (int(self.joints2d.r[kintree[0, k], 0]), int(self.joints2d.r[kintree[0, k], 1])), (int(self.joints2d.r[kintree[1, k], 0]), int(self.joints2d.r[kintree[1, k], 1])), (0.98, 0.98, 0.98), 3) if self.view_joints.isChecked(): for j in self.joints2d.r: cv2.circle(img, (int(j[0]), int(j[1])), 5, (0.38, 0.68, 0.15), -1) if self.view_joint_ids.isChecked(): for k, j in enumerate(self.joints2d.r): cv2.putText(img, str(k), (int(j[0]), int(j[1])), cv2.FONT_HERSHEY_DUPLEX, 0.6, (0.3, 0.23, 0.9), 2) return img
Example #4
Source File: pascal_voc.py From SSD-variants with MIT License | 6 votes |
def draw_bbox(self, img, bboxes, labels, relative=False): if len(labels) == 0: return img img = img.copy() h, w = img.shape[:2] if relative: bboxes = bboxes * [w, h, w, h] bboxes = bboxes.astype(np.int) labels = labels.astype(np.int) for bbox, label in zip(bboxes, labels): left, top, right, bot = bbox color = self.colors[label] label = self.id_to_label[label] cv2.rectangle(img, (left, top), (right, bot), color, 2) #img[max(0,top-18):min(h+1,top+2), max(0,left-2):min(left + len(label)*7+5,w+1)] = 15 cv2.putText(img, label, (left+1, top-5), cv2.FONT_HERSHEY_DUPLEX, 0.4, color, 1, cv2.LINE_AA) return img
Example #5
Source File: video.py From Advanced-Deep-Learning-with-Keras with MIT License | 6 votes |
def loop(self): font = cv2.FONT_HERSHEY_DUPLEX pos = (10,30) font_scale = 0.9 font_color = (0, 0, 0) line_type = 1 while True: start_time = datetime.datetime.now() ret, image = self.capture.read() #image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) #/ 255.0 cv2.imshow('image', image) if self.videowriter is not None: if self.videowriter.isOpened(): self.videowriter.write(image) if cv2.waitKey(1) & 0xFF == ord('q'): break # When everything done, release the capture self.capture.release() cv2.destroyAllWindows()
Example #6
Source File: annotate.py From faceswap with GNU General Public License v3.0 | 6 votes |
def draw_extract_box(self, color_id=2, thickness=1): """ Draw the extracted face box """ if not self.roi: return color = self.colors[color_id] for idx, roi in enumerate(self.roi): logger.trace("Drawing Extract Box: (idx: %s, roi: %s)", idx, roi) top_left = [point for point in roi.squeeze()[0]] top_left = (top_left[0], top_left[1] - 10) cv2.putText(self.image, str(idx), top_left, cv2.FONT_HERSHEY_DUPLEX, 1.0, color, thickness) cv2.polylines(self.image, [roi], True, color, thickness)
Example #7
Source File: visualization.py From Gather-Deployment with MIT License | 6 votes |
def bboxes_draw_on_img(img, classes, scores, bboxes, thickness=2): shape = img.shape for i in range(bboxes.shape[0]): label = labels[classes[i] - 1] if label not in accept_labels: continue bbox = bboxes[i] #color = colors_tableau[classes[i] - 1] p1 = (int(bbox[0] * shape[0]), int(bbox[1] * shape[1])) p2 = (int(bbox[2] * shape[0]), int(bbox[3] * shape[1])) cv2.rectangle(img, p1[::-1], p2[::-1], (0,0,255), 1) s = '%s' % (label) p1 = (p1[0]-5, p1[1]) cv2.putText(img, s, p1[::-1], cv2.FONT_HERSHEY_DUPLEX, 0.7, (0,0,255), 1) # =========================================================================== # # Matplotlib show... # =========================================================================== #
Example #8
Source File: visualization.py From SSD_tensorflow_VOC with Apache License 2.0 | 6 votes |
def bboxes_draw_on_img(img, classes, scores, bboxes, colors, thickness=2): shape = img.shape for i in range(bboxes.shape[0]): bbox = bboxes[i] color = colors[classes[i]] # Draw bounding box... p1 = (int(bbox[0] * shape[0]), int(bbox[1] * shape[1])) p2 = (int(bbox[2] * shape[0]), int(bbox[3] * shape[1])) cv2.rectangle(img, p1[::-1], p2[::-1], color, thickness) # Draw text... s = '%s/%.3f' % (classes[i], scores[i]) p1 = (p1[0]-5, p1[1]) cv2.putText(img, s, p1[::-1], cv2.FONT_HERSHEY_DUPLEX, 0.4, color, 1) # =========================================================================== # # Matplotlib show... # =========================================================================== #
Example #9
Source File: facerec_from_webcam_faster.py From face-attendance-machine with Apache License 2.0 | 6 votes |
def face_process(): myprint("face process start",time.time()) # Find all the faces and face encodings in the current frame of video # face_locations = face_recognition.face_locations(rgb_small_frame, model="cnn") myprint('face_locations start', time.time()) face_locations = face_recognition.face_locations(rgb_small_frame, model="hog") myprint('face_locations end', time.time()) myprint('face_encodings start', time.time()) face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) myprint('face_encodings end', time.time()) face_names = [] for face_encoding in face_encodings: # optimize start 采用KNN 排名*权重, 在类别上进行叠加,然后排序取出top1 name, dis = vote_class(face_encoding) # optimize end 采用 排名*权重, 在类别上进行叠加,然后排序取出top1 face_names.append(name) # 将人脸数据 # Display the results for (top, right, bottom, left), name in zip(face_locations, face_names): # Scale back up face locations since the frame we detected in was scaled to 1/4 size top *= 4 right *= 4 bottom *= 4 left *= 4 myprint('putText start', time.time()) # Draw a box around the face cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) # Draw a label with a name below the face cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) myprint("putText end " + name, time.time()) # say hello and save record to file myprint('process_face_records start', time.time()) process_face_records(name) myprint('process_face_records end', time.time()) # Display the resulting image cv2.imshow('Video', frame) myprint("face process end", time.time())
Example #10
Source File: camera.py From rps-cv with MIT License | 6 votes |
def addFrameRateText(self, img, pos=(0, 25), bgr=(0,255,0), samples=21): """Returns an image with the frame rate added as text on the image passed as argument. The framerate is calculated based on the time between calls to this method and averaged over a number of samples. img: image to which the framerate is to be added, bgr: tuple defining the blue, green and red values of the text color, samples: number of samples used for averaging. """ # Calculate framerate and reset timer self.frameRateFilter.addDataPoint(1 / self.frameRateTimer.getElapsed()) self.frameRateTimer.reset() # Get averaged framerate as a string frString = '{}fps'.format(str(int(round(self.frameRateFilter.getMean(), 0)))) # Add text to image cv2.putText(img, frString, pos, cv2.FONT_HERSHEY_DUPLEX, 1, bgr)
Example #11
Source File: camera.py From Live-USB-Webcam-Streaming-on-ThingsBoard-IoT-Platform with MIT License | 6 votes |
def get_frame(self): success, image = self.video.read() image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) faces_rects = haar_cascade_face.detectMultiScale(image_gray, scaleFactor=1.2, minNeighbors=5); # Let us print the no. of faces found #print('Faces found: ', len(faces_rects)) for (x, y, w, h) in faces_rects: cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2) if len(faces_rects) > 0: cv2.putText(img = image, text = 'Faces found:' + str(len(faces_rects)), org=(50,50), fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=1, color=(0, 0, 255)) # We are using Motion JPEG, but OpenCV defaults to capture raw images, # so we must encode it into JPEG in order to correctly display the # video stream. ret, jpeg = cv2.imencode('.jpg', image) return jpeg.tobytes()
Example #12
Source File: capture.py From rps-cv with MIT License | 6 votes |
def saveImage(img, gesture): # Define image path and filename folder = utils.imgPathsRaw[gesture] name = utils.gestureTxt[gesture] + '-' + time.strftime('%Y%m%d-%H%M%S') extension = '.png' print("Saving " + name + extension + " - Accept ([y]/n)?") # Write gesture name to image and show for a few seconds imgTxt = img.copy() font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(imgTxt, utils.gestureTxt[gesture], (10,25), font, 1, (0, 0, 255)) cv2.imshow('Camera', imgTxt) key = cv2.waitKey(2000) if key not in [110, 120]: # Key is not x or n. Save image cv2.imwrite(folder + name + extension, img) print("Saved ({}x{})".format(img.shape[1], img.shape[0])) else: print("Save cancelled")
Example #13
Source File: draw_toolbox.py From X-Detector with Apache License 2.0 | 6 votes |
def draw_bbox(img, bbox, shape, label, color=[255, 0, 0], thickness=2): p1 = (int(bbox[0] * shape[0]), int(bbox[1] * shape[1])) p2 = (int(bbox[2] * shape[0]), int(bbox[3] * shape[1])) cv2.rectangle(img, p1[::-1], p2[::-1], color, thickness) p1 = (p1[0]+15, p1[1]) cv2.putText(img, str(label), p1[::-1], cv2.FONT_HERSHEY_DUPLEX, 0.5, color, 1) return img # def bboxes_draw_on_img(img, classes, scores, bboxes, thickness=2): # shape = img.shape # for i in range(bboxes.shape[0]): # bbox = bboxes[i] # color = colors_tableau[classes[i]] # # Draw bounding box... # p1 = (int(bbox[0] * shape[0]), int(bbox[1] * shape[1])) # p2 = (int(bbox[2] * shape[0]), int(bbox[3] * shape[1])) # cv2.rectangle(img, p1[::-1], p2[::-1], color, thickness) # # Draw text... # s = '%s|%.3f' % (label2name_table[classes[i]], scores[i]) # p1 = (p1[0]-6, p1[1]) # cv2.putText(img, s, p1[::-1], cv2.FONT_HERSHEY_DUPLEX, 0.5, color, 1) # return img
Example #14
Source File: dataset.py From OpenCV-Video-Label with GNU General Public License v3.0 | 5 votes |
def draw_roi(self, add_class_label=True): font = cv2.FONT_HERSHEY_DUPLEX # draw the bounding box cv2.rectangle(self.image, (self.tl_x, self.tl_y), (self.br_x, self.br_y), GUI_REDD_RGB, 2) # draw the class label background and label if add_class_label: cv2.rectangle(self.image, (self.tl_x - 1, self.tl_y - 15), (self.tl_x + 10 + len(self.image_class) * 10, self.tl_y), GUI_REDD_RGB, cv2.FILLED) cv2.putText(self.image, self.image_class, (self.tl_x + 5, self.tl_y - 2), font, .5, (255, 255, 255), 1, cv2.LINE_AA) # crops image to objects location
Example #15
Source File: video_infer.py From homesecurity with MIT License | 5 votes |
def show_bounding_boxes(img, box, conf, cls, cls_dict): """Draw detected bounding boxes on the original image.""" font = cv2.FONT_HERSHEY_DUPLEX for bb, cf, cl in zip(box, conf, cls): cl = int(cl) y_min, x_min, y_max, x_max = bb[0], bb[1], bb[2], bb[3] cv2.rectangle(img, (x_min, y_min), (x_max, y_max), BBOX_COLOR, 2) txt_loc = (max(x_min, 5), max(y_min-3, 20)) cls_name = cls_dict.get(cl, 'CLASS{}'.format(cl)) txt = '{} {:.2f}'.format(cls_name, cf) cv2.putText(img, txt, txt_loc, font, 0.8, BBOX_COLOR, 1) return img
Example #16
Source File: tx2_surveillance.py From homesecurity with MIT License | 5 votes |
def show_bounding_boxes(img, box, conf, cls, cls_dict): """Draw detected bounding boxes on the original image.""" font = cv2.FONT_HERSHEY_DUPLEX for bb, cf, cl in zip(box, conf, cls): cl = int(cl) y_min, x_min, y_max, x_max = bb[0], bb[1], bb[2], bb[3] cv2.rectangle(img, (x_min, y_min), (x_max, y_max), BBOX_COLOR, 2) txt_loc = (max(x_min, 5), max(y_min-3, 20)) cls_name = cls_dict.get(cl, 'CLASS{}'.format(cl)) txt = '{} {:.2f}'.format(cls_name, cf) cv2.putText(img, txt, txt_loc, font, 0.8, BBOX_COLOR, 1) return img
Example #17
Source File: tracking_demo.py From RFL with MIT License | 5 votes |
def display_result(image, pred_boxes, frame_idx, seq_name=None): if len(image.shape) == 3: r, g, b = cv2.split(image) image = cv2.merge([b, g, r]) pred_boxes = pred_boxes.astype(int) cv2.rectangle(image, tuple(pred_boxes[0:2]), tuple(pred_boxes[0:2] + pred_boxes[2:4]), (0, 0, 255), 2) cv2.putText(image, 'Frame: %d' % frame_idx, (20, 30), cv2.FONT_HERSHEY_DUPLEX, 0.8, (0, 255, 255)) cv2.imshow('tracker', image) if cv2.waitKey(1) & 0xFF == ord('q'): return True if config.is_save: cv2.imwrite(os.path.join(config.save_path, seq_name, '%04d.jpg' % frame_idx), image)
Example #18
Source File: calcui.py From ncappzoo with MIT License | 5 votes |
def __init__(self, label, x, y, canvas, color=(0, 0, 0), thickness=1, scale=1, font=cv2.FONT_HERSHEY_DUPLEX): super(Label, self).__init__(x, y, canvas, color=color, thickness=thickness) self.label = label self.font = font self.color = color self.scale = scale
Example #19
Source File: demo.py From MemTrack with MIT License | 5 votes |
def display_result(image, pred_boxes, frame_idx, seq_name=None): if len(image.shape) == 3: r, g, b = cv2.split(image) image = cv2.merge([b, g, r]) pred_boxes = pred_boxes.astype(int) cv2.rectangle(image, tuple(pred_boxes[0:2]), tuple(pred_boxes[0:2] + pred_boxes[2:4]), (0, 0, 255), 2) cv2.putText(image, 'Frame: %d' % frame_idx, (20, 30), cv2.FONT_HERSHEY_DUPLEX, 0.8, (0, 255, 255)) cv2.imshow('tracker', image) if cv2.waitKey(1) & 0xFF == ord('q'): return True if config.is_save: cv2.imwrite(os.path.join(config.save_path, seq_name, '%04d.jpg' % frame_idx), image)
Example #20
Source File: video_extractor.py From rbb_core with MIT License | 5 votes |
def write_text(cv_img, text, x, y): cv2.putText(cv_img, text, (x, y), cv2.FONT_HERSHEY_DUPLEX, .5, (0,0,0), thickness=2) cv2.putText(cv_img, text, (x, y), cv2.FONT_HERSHEY_DUPLEX, .5, (255,255,255), thickness=1)
Example #21
Source File: visualization.py From SSD_tensorflow_VOC with Apache License 2.0 | 5 votes |
def draw_bbox(img, bbox, shape, label, color=[255, 0, 0], thickness=2): p1 = (int(bbox[0] * shape[0]), int(bbox[1] * shape[1])) p2 = (int(bbox[2] * shape[0]), int(bbox[3] * shape[1])) cv2.rectangle(img, p1[::-1], p2[::-1], color, thickness) p1 = (p1[0]+15, p1[1]) cv2.putText(img, str(label), p1[::-1], cv2.FONT_HERSHEY_DUPLEX, 0.5, color, 1)
Example #22
Source File: simplevis.py From Det3D with Apache License 2.0 | 5 votes |
def cv2_draw_text(img, locs, labels, colors, thickness, line_type=cv2.LINE_8): locs = locs.astype(np.int32) font_line_type = cv2.LINE_8 font = cv2.FONT_ITALIC font = cv2.FONT_HERSHEY_DUPLEX font = cv2.FONT_HERSHEY_PLAIN font = cv2.FONT_HERSHEY_SIMPLEX for loc, label, color in zip(locs, labels, colors): color = list(int(c) for c in color) cv2.putText( img, label, tuple(loc), font, 0.7, color, thickness, font_line_type, False ) return img
Example #23
Source File: ObjectCounter.py From ivy with MIT License | 5 votes |
def visualize(self): frame = self.frame font = cv2.FONT_HERSHEY_DUPLEX line_type = cv2.LINE_AA # draw and label blob bounding boxes for _id, blob in self.blobs.items(): (x, y, w, h) = [int(v) for v in blob.bounding_box] cv2.rectangle(frame, (x, y), (x + w, y + h), self.hud_color, 2) object_label = 'I: ' + _id[:8] \ if blob.type is None \ else 'I: {0}, T: {1} ({2})'.format(_id[:8], blob.type, str(blob.type_confidence)[:4]) cv2.putText(frame, object_label, (x, y - 5), font, 1, self.hud_color, 2, line_type) # draw counting lines for counting_line in self.counting_lines: cv2.line(frame, counting_line['line'][0], counting_line['line'][1], self.hud_color, 3) cl_label_origin = (counting_line['line'][0][0], counting_line['line'][0][1] + 35) cv2.putText(frame, counting_line['label'], cl_label_origin, font, 1, self.hud_color, 2, line_type) # show detection roi if self.show_droi: frame = draw_roi(frame, self.droi) # show counts if self.show_counts: offset = 1 for line, objects in self.counts.items(): cv2.putText(frame, line, (10, 40 * offset), font, 1, self.hud_color, 2, line_type) for label, count in objects.items(): offset += 1 cv2.putText(frame, "{}: {}".format(label, count), (10, 40 * offset), font, 1, self.hud_color, 2, line_type) offset += 2 return frame
Example #24
Source File: visualizer.py From deep_human with GNU General Public License v3.0 | 5 votes |
def show_prections(img, predictions): i = 0 jointsnum = predictions.shape[0] for coord in range(jointsnum): if(True): keypt = (int(predictions[coord,0]), int(predictions[coord,1])) print(keypt) text_loc = (keypt[0]+5, keypt[1]+7) cv2.circle(img, keypt, 3, (55,255,155), -1) cv2.putText(img, str(coord), text_loc, cv2.FONT_HERSHEY_DUPLEX, 0.5, (55,255,155), 1) cv2.imshow('img', img) cv2.waitKey(0) cv2.destroyAllWindows()
Example #25
Source File: visualizer.py From deep_human with GNU General Public License v3.0 | 5 votes |
def show_prections(img, predictions): i = 0 jointsnum = predictions.shape[0] for coord in range(jointsnum): if(True): keypt = (int(predictions[coord,0]), int(predictions[coord,1])) print(keypt) text_loc = (keypt[0]+5, keypt[1]+7) cv2.circle(img, keypt, 3, (55,255,155), -1) cv2.putText(img, str(coord), text_loc, cv2.FONT_HERSHEY_DUPLEX, 0.5, (55,255,155), 1) cv2.imshow('img', img) cv2.waitKey(0) cv2.destroyAllWindows()
Example #26
Source File: simplevis.py From second.pytorch with MIT License | 5 votes |
def cv2_draw_text(img, locs, labels, colors, thickness, line_type=cv2.LINE_8): locs = locs.astype(np.int32) font_line_type = cv2.LINE_8 font = cv2.FONT_ITALIC font = cv2.FONT_HERSHEY_DUPLEX font = cv2.FONT_HERSHEY_PLAIN font = cv2.FONT_HERSHEY_SIMPLEX for loc, label, color in zip(locs, labels, colors): color = list(int(c) for c in color) cv2.putText(img, label, tuple(loc), font, 0.7, color, thickness, font_line_type, False) return img
Example #27
Source File: visualization.py From VTuber_Unity with MIT License | 5 votes |
def draw_FPS(frame, FPS): cv2.putText(frame, "FPS: %d"%FPS, (40, 40), cv2.FONT_HERSHEY_DUPLEX, 1, (0, 255, 0), 1)
Example #28
Source File: HandRecognition.py From hand-gesture-recognition-opencv with MIT License | 5 votes |
def find_gesture(frame_in,finger,palm): frame_gesture.set_palm(palm[0],palm[1]) frame_gesture.set_finger_pos(finger) frame_gesture.calc_angles() gesture_found=DecideGesture(frame_gesture,GestureDictionary) gesture_text="GESTURE:"+str(gesture_found) cv2.putText(frame_in,gesture_text,(int(0.56*frame_in.shape[1]),int(0.97*frame_in.shape[0])),cv2.FONT_HERSHEY_DUPLEX,1,(0,255,255),1,8) return frame_in,gesture_found # 7. Remove bg from image
Example #29
Source File: image_parsing.py From hazymaze with Apache License 2.0 | 5 votes |
def write_text(image, text): h, w = image.shape[0], image.shape[1] font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(image,text, (w//5, h-40), font, 1,(255,255,255),2,cv2.LINE_AA)
Example #30
Source File: test_webcam.py From face_landmark_dnn with MIT License | 5 votes |
def webcam_main(): print("Camera sensor warming up...") vs = cv2.VideoCapture(0) time.sleep(2.0) mark_detector = MarkDetector() # loop over the frames from the video stream while True: _, frame = vs.read() start = cv2.getTickCount() frame = imutils.resize(frame, width=750, height=750) frame = cv2.flip(frame, 1) faceboxes = mark_detector.extract_cnn_facebox(frame) if faceboxes is not None: for facebox in faceboxes: # Detect landmarks from image of 64X64 with grayscale. face_img = frame[facebox[1]: facebox[3], facebox[0]: facebox[2]] # cv2.rectangle(frame, (facebox[0], facebox[1]), (facebox[2], facebox[3]), (0, 255, 0), 2) face_img = cv2.resize(face_img, (CNN_INPUT_SIZE, CNN_INPUT_SIZE)) face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2GRAY) face_img0 = face_img.reshape(1, CNN_INPUT_SIZE, CNN_INPUT_SIZE, 1) land_start_time = time.time() marks = mark_detector.detect_marks_keras(face_img0) # marks *= 255 marks *= facebox[2] - facebox[0] marks[:, 0] += facebox[0] marks[:, 1] += facebox[1] # Draw Predicted Landmarks mark_detector.draw_marks(frame, marks, color=(255, 255, 255), thick=2) fps_time = (cv2.getTickCount() - start)/cv2.getTickFrequency() cv2.putText(frame, '%.1ffps'%(1/fps_time) , (frame.shape[1]-65,15), cv2.FONT_HERSHEY_DUPLEX, 0.5, (0,255,0)) # show the frame cv2.imshow("Frame", frame) # writer.write(frame) key = cv2.waitKey(1) & 0xFF # if the `q` key was pressed, break from the loop if key == ord("q"): break # do a bit of cleanup cv2.destroyAllWindows() vs.stop()