Python cv2.COLOR_BGR2YCR_CB Examples
The following are 11
code examples of cv2.COLOR_BGR2YCR_CB().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: neural_style.py From neural-style-tf with GNU General Public License v3.0 | 7 votes |
def convert_to_original_colors(content_img, stylized_img): content_img = postprocess(content_img) stylized_img = postprocess(stylized_img) if args.color_convert_type == 'yuv': cvt_type = cv2.COLOR_BGR2YUV inv_cvt_type = cv2.COLOR_YUV2BGR elif args.color_convert_type == 'ycrcb': cvt_type = cv2.COLOR_BGR2YCR_CB inv_cvt_type = cv2.COLOR_YCR_CB2BGR elif args.color_convert_type == 'luv': cvt_type = cv2.COLOR_BGR2LUV inv_cvt_type = cv2.COLOR_LUV2BGR elif args.color_convert_type == 'lab': cvt_type = cv2.COLOR_BGR2LAB inv_cvt_type = cv2.COLOR_LAB2BGR content_cvt = cv2.cvtColor(content_img, cvt_type) stylized_cvt = cv2.cvtColor(stylized_img, cvt_type) c1, _, _ = cv2.split(stylized_cvt) _, c2, c3 = cv2.split(content_cvt) merged = cv2.merge((c1, c2, c3)) dst = cv2.cvtColor(merged, inv_cvt_type).astype(np.float32) dst = preprocess(dst) return dst
Example #2
Source File: use_SRCNN.py From SRCNN with MIT License | 6 votes |
def prepare_raw(path): # Settings. data = [] color = [] # Read in image and convert to ycrcb color space. img = cv.imread(path) im = cv.cvtColor(img, cv.COLOR_BGR2YCR_CB) img = im2double(im) # Only use the luminance value. size = img.shape img_temp = scipy.misc.imresize(img, [size[0] * multiplier, size[1] * multiplier], interp='bicubic') color_temp = scipy.misc.imresize(im, [size[0] * multiplier, size[1] * multiplier], interp='bicubic') im_label = img_temp[:, :, 0] im_color = color_temp[:, :, 1:3] data = np.array(im_label).reshape([1, img.shape[0] * multiplier, img.shape[1] * multiplier, 1]) color = np.array(im_color) return data, color # Use the trained model to generate super-resolutioned image.
Example #3
Source File: eye2.py From faceai with MIT License | 5 votes |
def hist(img): ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) channels = cv2.split(ycrcb) cv2.equalizeHist(channels[0], channels[0]) #输入通道、输出通道矩阵 cv2.merge(channels, ycrcb) #合并结果通道 cv2.cvtColor(ycrcb, cv2.COLOR_YCR_CB2BGR, img) return img
Example #4
Source File: eye.py From faceai with MIT License | 5 votes |
def hist(img): ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) channels = cv2.split(ycrcb) cv2.equalizeHist(channels[0], channels[0]) #输入通道、输出通道矩阵 cv2.merge(channels, ycrcb) #合并结果通道 cv2.cvtColor(ycrcb, cv2.COLOR_YCR_CB2BGR, img) return img
Example #5
Source File: liveness.py From libfaceid with MIT License | 5 votes |
def get_embeddings(self, frame, face): (x, y, w, h) = face img = frame[y:y+h, x:x+w] img_ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) img_luv = cv2.cvtColor(img, cv2.COLOR_BGR2LUV) hist_ycrcb = self.calc_hist(img_ycrcb) hist_luv = self.calc_hist(img_luv) feature_vector = np.append(hist_ycrcb.ravel(), hist_luv.ravel()) return feature_vector.reshape(1, len(feature_vector)) # private function
Example #6
Source File: test.py From PytorchConverter with BSD 2-Clause "Simplified" License | 5 votes |
def __call__(self, image): img_hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) img_ycc = cv2.cvtColor(image, cv2.COLOR_BGR2YCR_CB) img = np.concatenate((img_hsv, img_ycc), 2) return img
Example #7
Source File: skin_segmentation.py From Mastering-OpenCV-4-with-Python with MIT License | 5 votes |
def skin_detector_ycrcb(bgr_image): """Skin segmentation algorithm based on the YCrCb color space. See 'Face Segmentation Using Skin-Color Map in Videophone Applications'""" # Convert image from BGR to YCrCb color space: ycrcb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2YCR_CB) # Find region with skin tone in YCrCb image skin_region = cv2.inRange(ycrcb_image, lower_ycrcb, upper_ycrcb) return skin_region # Values are taken from: 'RGB-H-CbCr Skin Colour Model for Human Face Detection' # (R > 95) AND (G > 40) AND (B > 20) AND (max{R, G, B} − min{R, G, B} > 15) AND (|R − G| > 15) AND (R > G) AND (R > B) # (R > 220) AND (G > 210) AND (B > 170) AND (|R − G| ≤ 15) AND (R > B) AND (G > B)
Example #8
Source File: prepare_test.py From SRCNN with MIT License | 4 votes |
def modcrop_color(image, scale=3): size = image.shape[0:2] size -= np.mod(size, scale) image = image[0:size[0], 0:size[1], :] return image # Load and preprocess the training images. # dirpath = './Test/Set5/' # for root, dirs, files in os.walk(dirpath): # for file in files: # # Read in image and convert to ycrcb color space. # img = cv.imread(dirpath + file) # # cv.imshow('image',img) # # cv.waitKey(0) # # cv.destroyAllWindows() # img = cv.cvtColor(img, cv.COLOR_BGR2YCR_CB) # img = im2double(img) # Only use the luminance value. # # Create groundtruth and baseline image. # im_label = modcrop(img) # size = im_label.shape # h = size[0] # w = size[1] # im_temp = scipy.misc.imresize(im_label, 1/scale, interp='bicubic') # im_input = scipy.misc.imresize(im_temp, size, interp='bicubic') # # Generate subimages for training. # for x in range(0, h - size_input, stride): # for y in range(0, w - size_input, stride): # subim_input = im_input[x : x + size_input, y : y + size_input] # subim_label = im_label[int(x + padding) : int(x + padding + size_label), int(y + padding) : int(y + padding + size_label)] # subim_input = subim_input.reshape([size_input, size_input, 1]) # subim_label = subim_label.reshape([size_label, size_label, 1]) # data.append(subim_input) # label.append(subim_label) # counter += 1 # # Shuffle the data pairs. # order = np.random.choice(counter, counter, replace=False) # data = np.array([data[i] for i in order]) # label = np.array([label[i] for i in order]) # print('data shape is', data.shape) # print('label shape is', label.shape) # # Write to HDF5 file. # savepath = os.path.join(os.getcwd(), 'checkpoint/test.h5') # with h5py.File(savepath, 'w') as hf: # hf.create_dataset('data', data=data) # hf.create_dataset('label', data=label)
Example #9
Source File: use_SRCNN.py From SRCNN with MIT License | 4 votes |
def prepare_data(path): # Settings. data = [] label = [] padding = abs(size_input - size_label) / 2 stride = 21 # Read in image and convert to ycrcb color space. img_input = cv.imread(path) im = cv.cvtColor(img_input, cv.COLOR_BGR2YCR_CB) img = im2double(im) # Only use the luminance value. # Create groundtruth and baseline image. im_label = modcrop_color(img, scale=multiplier) color_base = modcrop_color(im, scale=multiplier) size = im_label.shape h = size[0] w = size[1] im_blur = scipy.misc.imresize(im_label, 1 / multiplier, interp='bicubic') im_input = scipy.misc.imresize(im_blur, multiplier * 1.0, interp='bicubic') # print('im_temp shape:', im_temp.shape) # print('im_input shape:', im_input.shape) # Generate subimages. # for x in range(0, h - size_input, stride): # for y in range(0, w - size_input, stride): # subim_input = im_input[x : x + size_input, y : y + size_input] # subim_label = im_label[int(x + padding) : int(x + padding + size_label), int(y + padding) : int(y + padding + size_label)] # subim_input = subim_input.reshape([size_input, size_input, 1]) # subim_label = subim_label.reshape([size_label, size_label, 1]) # data.append(subim_input) # label.append(subim_label) data = np.array(im_input[:,:,0]).reshape([1, h, w, 1]) color = np.array(color_base[:,:,1:3]) label = np.array(modcrop_color(img_input)) # Write to HDF5 file. # savepath = os.path.join(os.getcwd(), 'checkpoint/test_image.h5') # with h5py.File(savepath, 'w') as hf: # hf.create_dataset('data', data=data) # hf.create_dataset('label', data=label) return data, label, color # Prepare original data without blurring.
Example #10
Source File: eye.py From faceai with MIT License | 4 votes |
def houghCircles(path, counter): img = cv2.imread(path, 0) # img = cv2.medianBlur(img, 5) x = cv2.Sobel(img, -1, 1, 0, ksize=3) y = cv2.Sobel(img, -1, 0, 1, ksize=3) absx = cv2.convertScaleAbs(x) absy = cv2.convertScaleAbs(y) img = cv2.addWeighted(absx, 0.5, absy, 0.5, 0) # ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) # channels = cv2.split(ycrcb) # cv2.equalizeHist(channels[0], channels[0]) #输入通道、输出通道矩阵 # cv2.merge(channels, ycrcb) #合并结果通道 # cv2.cvtColor(ycrcb, cv2.COLOR_YCR_CB2BGR, img) # img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) cimg = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) # cv2.imshow("img2", img) # cv2.imshow("grayimg", grayimg) circles = cv2.HoughCircles( img, cv2.HOUGH_GRADIENT, 1, 50, param1=50, param2=10, minRadius=2, maxRadius=0) circles = np.uint16(np.around(circles)) for i in circles[0, :]: # draw the outer circle # cv2.circle(cimg, (i[0], i[1]), i[2], (0, 255, 0), 1) # draw the center of the circle cv2.circle(cimg, (i[0], i[1]), 2, (0, 0, 255), 2) # cv2.imshow("img" + str(counter), cimg) return (i[0] + 3, i[1] + 3) #彩色直方图均衡化
Example #11
Source File: utils.py From RDN-TensorFlow with MIT License | 4 votes |
def make_sub_data(data, config): if config.matlab_bicubic: import matlab.engine eng = matlab.engine.start_matlab() mdouble = matlab.double else: eng = None mdouble = None times = 0 for i in range(len(data)): input_, label_, = preprocess(data[i], config.scale, eng, mdouble) if len(input_.shape) == 3: h, w, c = input_.shape else: h, w = input_.shape for x in range(0, h * config.scale - config.image_size * config.scale + 1, config.stride * config.scale): for y in range(0, w * config.scale - config.image_size * config.scale + 1, config.stride * config.scale): sub_label = label_[x: x + config.image_size * config.scale, y: y + config.image_size * config.scale] sub_label = sub_label.reshape([config.image_size * config.scale , config.image_size * config.scale, config.c_dim]) t = cv2.cvtColor(sub_label, cv2.COLOR_BGR2YCR_CB) t = t[:, :, 0] gx = t[1:, 0:-1] - t[0:-1, 0:-1] gy = t[0:-1, 1:] - t[0:-1, 0:-1] Gxy = (gx**2 + gy**2)**0.5 r_gxy = float((Gxy > 10).sum()) / ((config.image_size*config.scale)**2) * 100 if r_gxy < 10: continue sub_label = sub_label / 255.0 x_i = int(x / config.scale) y_i = int(y / config.scale) sub_input = input_[x_i: x_i + config.image_size, y_i: y_i + config.image_size] sub_input = sub_input.reshape([config.image_size, config.image_size, config.c_dim]) sub_input = sub_input / 255.0 # checkimage(sub_input) # checkimage(sub_label) save_flag = make_data_hf(sub_input, sub_label, config, times) if not save_flag: return times += 1 print("image: [%2d], total: [%2d]"%(i, len(data))) if config.matlab_bicubic: eng.quit()