Python cv2.IMREAD_ANYCOLOR Examples
The following are 24
code examples of cv2.IMREAD_ANYCOLOR().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: doc3dwc_loader.py From DewarpNet with MIT License | 7 votes |
def __getitem__(self, index): im_name = self.files[self.split][index] # 1/824_8-cp_Page_0503-7Nw0001 im_path = pjoin(self.root, 'img', im_name + '.png') lbl_path=pjoin(self.root, 'wc', im_name + '.exr') im = m.imread(im_path,mode='RGB') im = np.array(im, dtype=np.uint8) lbl = cv2.imread(lbl_path, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) lbl = np.array(lbl, dtype=np.float) if 'val' in self.split: im, lbl=tight_crop(im/255.0,lbl) if self.augmentations: #this is for training, default false for validation\ tex_id=random.randint(0,len(self.txpths)-1) txpth=self.txpths[tex_id] tex=cv2.imread(os.path.join(self.root[:-7],txpth)).astype(np.uint8) bg=cv2.resize(tex,self.img_size,interpolation=cv2.INTER_NEAREST) im,lbl=data_aug(im,lbl,bg) if self.is_transform: im, lbl = self.transform(im, lbl) return im, lbl
Example #2
Source File: bagdump.py From udacity-driving-reader with Apache License 2.0 | 7 votes |
def write_image(bridge, outdir, msg, fmt='png'): results = {} image_filename = os.path.join(outdir, str(msg.header.stamp.to_nsec()) + '.' + fmt) try: if hasattr(msg, 'format') and 'compressed' in msg.format: buf = np.ndarray(shape=(1, len(msg.data)), dtype=np.uint8, buffer=msg.data) cv_image = cv2.imdecode(buf, cv2.IMREAD_ANYCOLOR) if cv_image.shape[2] != 3: print("Invalid image %s" % image_filename) return results results['height'] = cv_image.shape[0] results['width'] = cv_image.shape[1] # Avoid re-encoding if we don't have to if check_format(msg.data) == fmt: buf.tofile(image_filename) else: cv2.imwrite(image_filename, cv_image) else: cv_image = bridge.imgmsg_to_cv2(msg, "bgr8") cv2.imwrite(image_filename, cv_image) except CvBridgeError as e: print(e) results['filename'] = image_filename return results
Example #3
Source File: utils.py From pytorch-serverless with MIT License | 6 votes |
def open_image(path): """ Opens an image using OpenCV given the file path. :param path: the file path of the image :return: the image in RGB format as numpy array of floats normalized to range between 0.0 - 1.0 """ flags = cv2.IMREAD_UNCHANGED+cv2.IMREAD_ANYDEPTH+cv2.IMREAD_ANYCOLOR path = str(path) if not os.path.exists(path): raise OSError(f'No such file or directory: {path}') elif os.path.isdir(path): raise OSError(f'Is a directory: {path}') else: try: im = cv2.imread(str(path), flags).astype(np.float32)/255 if im is None: raise OSError(f'File not recognized by opencv: {path}') return cv2.cvtColor(im, cv2.COLOR_BGR2RGB) except Exception as e: raise OSError(f'Error handling image at: {path}') from e
Example #4
Source File: gray_image_detector.py From image_utility with MIT License | 6 votes |
def main(): lg = ListGenerator() files_to_check = lg.generate_list(args.dir, ['jpg']) print("Total files: {}".format(len(files_to_check))) gray_img_list = [] num_checked = 0 for each_file in tqdm(files_to_check[54145:54146]): img = cv2.imread(each_file, cv2.IMREAD_ANYCOLOR) print(each_file) # Preview gray images. if len(img.shape) != 3: gray_img_list.append(each_file) cv2.imshow("gray", img) if cv2.waitKey(100) == 27: break print("Total gray images: {}".format(len(gray_img_list)))
Example #5
Source File: dataset_util.py From Gated2Depth with MIT License | 6 votes |
def read_gated_image(base_dir, gta_pass, img_id, data_type, num_bits=10, scale_images=False, scaled_img_width=None, scaled_img_height=None, normalize_images=False): gated_imgs = [] normalizer = 2 ** num_bits - 1. for gate_id in range(3): gate_dir = os.path.join(base_dir, gta_pass, 'gated%d_10bit' % gate_id) img = cv2.imread(os.path.join(gate_dir, img_id + '.png'), cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) if data_type == 'real': img = img[crop_size:(img.shape[0] - crop_size), crop_size:(img.shape[1] - crop_size)] img = img.copy() img[img > 2 ** 10 - 1] = normalizer img = np.float32(img / normalizer) gated_imgs.append(np.expand_dims(img, axis=2)) img = np.concatenate(gated_imgs, axis=2) if normalize_images: mean = np.mean(img, axis=2, keepdims=True) std = np.std(img, axis=2, keepdims=True) img = (img - mean) / (std + np.finfo(float).eps) if scale_images: img = cv2.resize(img, dsize=(scaled_img_width, scaled_img_height), interpolation=cv2.INTER_AREA) return np.expand_dims(img, axis=0)
Example #6
Source File: image.py From ImageAnalysis with MIT License | 6 votes |
def load_rgb(self, equalize=False): # print("Loading:", self.image_file) try: img_rgb = cv2.imread(self.image_file, flags=cv2.IMREAD_ANYCOLOR|cv2.IMREAD_ANYDEPTH|cv2.IMREAD_IGNORE_ORIENTATION) if equalize: # equalize val (essentially gray scale level) clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8)) hsv = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2HSV) hue, sat, val = cv2.split(hsv) aeq = clahe.apply(val) # recombine hsv = cv2.merge((hue,sat,aeq)) # convert back to rgb img_rgb = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) h, w = img_rgb.shape[:2] self.node.setInt('height', h) self.node.setInt('width', w) return img_rgb except: print(self.image_file + ":\n" + " rgb load error: " \ + str(sys.exc_info()[1])) return None
Example #7
Source File: test_flownet_2015.py From DF-Net with MIT License | 5 votes |
def get_flow(path): bgr = cv2.imread(path, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) invalid = bgr[:, :, 0] == 0 out_flow = (bgr[:, :, 2:0:-1].astype('f4') - 2**15) / 64. out_flow[invalid] = 0 return out_flow, bgr[:, :, 0]
Example #8
Source File: create_vkitti_tf_record.py From motion-rcnn with MIT License | 5 votes |
def _read_image(filename, rgb=False): "Read (h, w, 3) image from .png." if not rgb: with open(filename, 'rb') as f: image = f.read() return image image = cv2.imread(filename, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) h, w, _c = image.shape assert image.dtype == np.uint8 and _c == 3 if rgb: image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) return image
Example #9
Source File: create_vkitti_tf_record.py From motion-rcnn with MIT License | 5 votes |
def _read_flow(flow_fn): "Convert from .png to (h, w, 2) (flow_x, flow_y) float32 array" # read png to bgr in 16 bit unsigned short bgr = cv2.imread(flow_fn, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) h, w, _c = bgr.shape assert bgr.dtype == np.uint16 and _c == 3 # b == invalid flow flag == 0 for sky or other invalid flow invalid = bgr[..., 0] == 0 # g,r == flow_y,x normalized by height,width and scaled to [0;2**16 - 1] out_flow = 2.0 / (2**16 - 1.0) * bgr[..., 2:0:-1].astype('f4') - 1 out_flow[..., 0] *= w - 1 out_flow[..., 1] *= h - 1 out_flow[invalid] = np.nan # 0 or another value (e.g., np.nan) return out_flow
Example #10
Source File: create_kitti_tf_record.py From motion-rcnn with MIT License | 5 votes |
def _read_disparity_image(filename): "Read (h, w, 1) uint16 KITTI disparity image from .png." image = cv2.imread(filename, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) h, w = image.shape[:2] assert image.dtype == np.uint16 and len(image.shape) == 2 return image
Example #11
Source File: create_kitti_tf_record.py From motion-rcnn with MIT License | 5 votes |
def _read_image(filename, rgb=False): "Read (h, w, 3) image from .png." if not rgb: with open(filename, 'rb') as f: image = f.read() return image image = cv2.imread(filename, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) h, w, _c = image.shape assert image.dtype == np.uint8 and _c == 3 if rgb: image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) return image
Example #12
Source File: create_kitti_tf_record.py From motion-rcnn with MIT License | 5 votes |
def _read_flow(flow_fn): "Convert from .png to (h, w, 2) (flow_x, flow_y) float32 array" # read png to bgr in 16 bit unsigned short bgr = cv2.imread(flow_fn, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB) h, w, _c = rgb.shape assert rgb.dtype == np.uint16 and _c == 3 invalid = rgb[:, :, 2] == 0 # g,r == flow_y,x normalized by height,width and scaled to [0;2**16 - 1] out_flow = (rgb[:, :, :2] - 2 ** 15) / 64.0 print(out_flow.shape, invalid.shape) out_flow[invalid] = np.nan # 0 or another value (e.g., np.nan) return out_flow
Example #13
Source File: ac3d.py From ImageAnalysis with MIT License | 5 votes |
def make_textures_opencv(src_dir, project_dir, image_list, resolution=256): dst_dir = os.path.join(project_dir, 'models') if not os.path.exists(dst_dir): print("Notice: creating texture directory =", dst_dir) os.makedirs(dst_dir) for image in image_list: src = image.image_file dst = os.path.join(dst_dir, image.name + '.JPG') if not os.path.exists(dst): print(src) src = cv2.imread(src, flags=cv2.IMREAD_ANYCOLOR|cv2.IMREAD_ANYDEPTH|cv2.IMREAD_IGNORE_ORIENTATION) height, width = src.shape[:2] # downscale image first method = cv2.INTER_AREA # cv2.INTER_AREA scale = cv2.resize(src, (0,0), fx=resolution/float(width), fy=resolution/float(height), interpolation=method) # convert to hsv color space hsv = cv2.cvtColor(scale, cv2.COLOR_BGR2HSV) hue,sat,val = cv2.split(hsv) # adaptive histogram equalization on 'value' channel clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8)) aeq = clahe.apply(val) # recombine hsv = cv2.merge((hue,sat,aeq)) # convert back to rgb result = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) cv2.imwrite(dst, result) print("Texture %dx%d %s" % (resolution, resolution, dst))
Example #14
Source File: convert_to_tfrecords.py From SSMA with GNU General Public License v3.0 | 5 votes |
def convert(f, record_name): count = 0.0 writer = tf.python_io.TFRecordWriter(record_name) for name in f: modality1 = cv2.imread(name[0]) modality2 = cv2.imread(name[1]) label = cv2.imread(name[2], cv2.IMREAD_ANYCOLOR) try: assert len(label.shape)==2 except AssertionError, e: raise( AssertionError( "Label should be one channel!" ) ) height = modality1.shape[0] width = modality1.shape[1] modality1 = modality1.tostring() modality2 = modality2.tostring() label = label.tostring() features = {'height':_int64_feature(height), 'width':_int64_feature(width), 'modality1':_bytes_feature(modality1), 'label':_bytes_feature(label), 'modality2':_bytes_feature(modality2) } example = tf.train.Example(features=tf.train.Features(feature=features)) writer.write(example.SerializeToString()) if (count+1)%1 == 0: print 'Processed data: {}'.format(count) count = count+1
Example #15
Source File: gen_lmdb_cache.py From sanet_relocal_demo with GNU General Public License v3.0 | 5 votes |
def read_img(self, img_key): img_str = np.fromstring(self.read_by_key(img_key), dtype=np.uint8) img = np.asarray(cv2.imdecode(img_str, cv2.IMREAD_ANYCOLOR)).reshape((240, 320)) return img
Example #16
Source File: convert_to_tfrecords.py From AdapNet-pp with GNU General Public License v3.0 | 5 votes |
def convert(f, record_name, mean_flag): count = 0.0 writer = tf.python_io.TFRecordWriter(record_name) if mean_flag: mean = np.zeros(cv2.imread(f[0][0]).shape, np.float32) for name in f: modality1 = cv2.imread(name[0]) if mean_flag: mean += modality1 label = cv2.imread(name[1], cv2.IMREAD_ANYCOLOR) try: assert len(label.shape)==2 except AssertionError, e: raise( AssertionError( "Label should be one channel!" ) ) height = modality1.shape[0] width = modality1.shape[1] modality1 = modality1.tostring() label = label.tostring() features = {'height':_int64_feature(height), 'width':_int64_feature(width), 'modality1':_bytes_feature(modality1), 'label':_bytes_feature(label), } example = tf.train.Example(features=tf.train.Features(feature=features)) writer.write(example.SerializeToString()) if (count+1)%1 == 0: print 'Processed data: {}'.format(count) count = count+1
Example #17
Source File: test_flownet_2012.py From DF-Net with MIT License | 5 votes |
def get_flow(path): bgr = cv2.imread(path, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) invalid = bgr[:, :, 0] == 0 out_flow = (bgr[:, :, 2:0:-1].astype('f4') - 2**15) / 64. out_flow[invalid] = 0 return out_flow, bgr[:, :, 0]
Example #18
Source File: image.py From DeepDepthDenoising with MIT License | 5 votes |
def load_image(filename, data_type=torch.float32): color_img = numpy.array(cv2.imread(filename, cv2.IMREAD_ANYCOLOR)) h, w, c = color_img.shape color_data = color_img.astype(numpy.float32).transpose(2, 0, 1) return torch.from_numpy( color_data.reshape(1, c, h, w) ).type(data_type) / 255.0
Example #19
Source File: doc3dbmnoimgc_loader.py From DewarpNet with MIT License | 5 votes |
def __getitem__(self, index): im_name = self.files[self.split][index] #1/2Xec_Page_453X56X0001.png im_path = pjoin(self.altroot, 'img', im_name + '.png') img_foldr,fname=im_name.split('/') recon_foldr='chess48' wc_path = pjoin(self.altroot, 'wc' , im_name + '.exr') bm_path = pjoin(self.altroot, 'bm' , im_name + '.mat') alb_path = pjoin(self.root,'recon',img_foldr,recon_foldr, fname[:-4]+recon_foldr+'0001.png') wc = cv2.imread(wc_path, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) bm = h5.loadmat(bm_path)['bm'] alb = m.imread(alb_path,mode='RGB') if self.is_transform: im, lbl = self.transform(wc,bm,alb) return im, lbl
Example #20
Source File: create_npy.py From vkitti3D-dataset with MIT License | 5 votes |
def process_frame(image_path: str) -> Tuple[np.ndarray, np.ndarray, str, str]: """ fix given frame :param image_path: path to frame which should be fixed :return: fixed frame """ seq_no = image_path.split('/')[-3] img_no = image_path.split('/')[-1].split('.')[0] depth_path = f"{depth_root}/{seq_no}/clone/{img_no}.png" semantic_path = f"{labels_root}/{seq_no}/clone/{img_no}.png" # BGR -> RGB rgb_map = cv2.imread(image_path)[:, :, (2, 1, 0)] # convert centimeters to meters depth_map = cv2.imread(depth_path, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) / 100. # semantic image semantic_map = cv2.imread(semantic_path)[:, :, (2, 1, 0)] label_map = np.apply_along_axis(lambda r: rgb2label[tuple(r)], 2, semantic_map) # backprojection to camera space x3 = (xv - center_x) / focal_x * depth_map y3 = (yv - center_y) / focal_y * depth_map erg = np.stack((depth_map, -x3, -y3), axis=-1).reshape((-1, 3)) erg = np.hstack((erg, rgb_map.reshape(-1, 3), label_map.reshape(-1, 1))) # delete sky points erg = distance_cutoff(erg, g_cutoff) if g_is_v1: return None, erg, seq_no, img_no else: erg = remove_car_shadows(erg, img_no, g_bb_eps) worldspace = transform2worldspace(erg, img_no) return worldspace, erg, seq_no, img_no
Example #21
Source File: convert_to_3_channel.py From image_utility with MIT License | 5 votes |
def main(): # Read in image list to be converted. with open('gray.json', 'r') as fp: img_list = json.load(fp) logging.debug("Total files to be converted: {}".format(len(img_list))) # Convert them into 3 channel images. for each_file in tqdm(img_list): img = cv2.imread(each_file, cv2.IMREAD_ANYCOLOR) if len(img.shape) == 3: print("Not a gray image: {}".format(each_file)) continue cv2.imshow('preview', img) if cv2.waitKey(30) == 27: break # Do convertion img_converted = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) # Write to file. cv2.imwrite(each_file, img_converted) # Check if convertion failed. img = cv2.imread(each_file, cv2.IMREAD_ANYCOLOR) assert len(img.shape) == 3, "Convertion failed: {}".format(each_file)
Example #22
Source File: utils.py From pytorch-serverless with MIT License | 5 votes |
def open_image_url(url): """ Opens an image using OpenCV from a URL. :param url: url path of the image :return: the image in RGB format as numpy array of floats normalized to range between 0.0 - 1.0 """ flags = cv2.IMREAD_UNCHANGED+cv2.IMREAD_ANYDEPTH+cv2.IMREAD_ANYCOLOR url = str(url) resp = urllib.request.urlopen(url) try: im = np.asarray(bytearray(resp.read())) im = cv2.imdecode(im, flags).astype(np.float32)/255 if im is None: raise OSError(f'File from url not recognized by opencv: {url}') return im except Exception as e: raise OSError(f'Error handling image from url at: {url}') from e
Example #23
Source File: panda3d.py From ImageAnalysis with MIT License | 4 votes |
def make_textures_opencv(src_dir, analysis_dir, image_list, resolution=512): dst_dir = os.path.join(analysis_dir, 'models') if not os.path.exists(dst_dir): log("Notice: creating texture directory =", dst_dir) os.makedirs(dst_dir) for image in image_list: src = image.image_file dst = os.path.join(dst_dir, image.name + '.JPG') log(src, '->', dst) if not os.path.exists(dst): src = cv2.imread(src, flags=cv2.IMREAD_ANYCOLOR|cv2.IMREAD_ANYDEPTH|cv2.IMREAD_IGNORE_ORIENTATION) height, width = src.shape[:2] # downscale image first method = cv2.INTER_AREA # cv2.INTER_AREA scale = cv2.resize(src, (0,0), fx=resolution/float(width), fy=resolution/float(height), interpolation=method) do_equalize = False if do_equalize: # convert to hsv color space hsv = cv2.cvtColor(scale, cv2.COLOR_BGR2HSV) hue,sat,val = cv2.split(hsv) # adaptive histogram equalization on 'value' channel clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8)) aeq = clahe.apply(val) # recombine hsv = cv2.merge((hue,sat,aeq)) # convert back to rgb result = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) else: result = scale cv2.imwrite(dst, result) qlog("Texture %dx%d %s" % (resolution, resolution, dst)) # make the dummy.jpg image from the first texture #src = os.path.join(dst_dir, image_list[0].image_file) src = image_list[0].image_file dst = os.path.join(dst_dir, "dummy.jpg") log("Dummy:", src, dst) if not os.path.exists(dst): src = cv2.imread(src, flags=cv2.IMREAD_ANYCOLOR|cv2.IMREAD_ANYDEPTH|cv2.IMREAD_IGNORE_ORIENTATION) height, width = src.shape[:2] # downscale image first method = cv2.INTER_AREA # cv2.INTER_AREA resolution = 64 dummy = cv2.resize(src, (0,0), fx=resolution/float(width), fy=resolution/float(height), interpolation=method) cv2.imwrite(dst, dummy) qlog("Texture %dx%d %s" % (resolution, resolution, dst))
Example #24
Source File: augmentationske2e.py From DewarpNet with MIT License | 4 votes |
def data_aug(im, fm, bg): im=im/255.0 bg=bg/255.0 # im, fm = tight_crop(im, fm) # change background img # msk = fm[:, :, 0] > 0 msk=((fm[:,:,0]!=0)&(fm[:,:,1]!=0)&(fm[:,:,2]!=0)).astype(np.uint8) msk = np.expand_dims(msk, axis=2) # replace bg [fh, fw, _] = im.shape chance=random.random() if chance > 0.3: bg = cv2.resize(bg, (200, 200)) bg = np.tile(bg, (3, 3, 1)) bg = bg[: fh, : fw, :] elif chance < 0.3 and chance> 0.2: c = np.array([random.random(), random.random(), random.random()]) bg = np.ones((fh, fw, 3)) * c else: bg=np.zeros((fh, fw, 3)) msk=np.ones((fh, fw, 3)) im = bg * (1 - msk) + im * msk # jitter color im = color_jitter(im, 0.2, 0.2, 0.6, 0.6) # im = change_hue_sat(im) # im = change_intensity(im) # plt.imshow(im) # plt.show() # plt.imshow(fm) # plt.show() return im, fm # def main(): # tex_id=random.randint(1,5640) # with open(os.path.join(root[:-7],'augtexnames.txt'),'r') as f: # for i in range(tex_id): # txpth=f.readline().strip() # for im_name in filenames: # im_path = os.path.join(root,'img',im_name+'.png') # img=cv2.imread(im_path).astype(np.uint8) # lbl_path = os.path.join(root, 'wc',im_name+'.exr') # lbl = cv2.imread(lbl_path, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) # tex=cv2.imread(os.path.join(root[:-7],txpth)).astype(np.uint8) # bg=cv2.resize(tex,(img.shape[1],img.shape[0]),interpolation=cv2.INTER_LANCZOS4) # img,lbl=data_aug(img,lbl,bg) # if __name__ == '__main__': # main()