Python networkx.draw_circular() Examples
The following are 10
code examples of networkx.draw_circular().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
networkx
, or try the search function
.
Example #1
Source File: test_pylab.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 6 votes |
def test_draw(self): try: N=self.G nx.draw_spring(N) plt.savefig("test.ps") nx.draw_random(N) plt.savefig("test.ps") nx.draw_circular(N) plt.savefig("test.ps") nx.draw_spectral(N) plt.savefig("test.ps") nx.draw_spring(N.to_directed()) plt.savefig("test.ps") finally: try: os.unlink('test.ps') except OSError: pass
Example #2
Source File: test_pylab.py From Carnets with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_draw(self): try: functions = [nx.draw_circular, nx.draw_kamada_kawai, nx.draw_planar, nx.draw_random, nx.draw_spectral, nx.draw_spring, nx.draw_shell] options = [{ 'node_color': 'black', 'node_size': 100, 'width': 3, }] for function, option in itertools.product(functions, options): function(self.G, **option) plt.savefig('test.ps') finally: try: os.unlink('test.ps') except OSError: pass
Example #3
Source File: test_pylab.py From aws-kube-codesuite with Apache License 2.0 | 6 votes |
def test_draw(self): try: functions = [nx.draw_circular, nx.draw_kamada_kawai, nx.draw_random, nx.draw_spectral, nx.draw_spring, nx.draw_shell] options = [{ 'node_color': 'black', 'node_size': 100, 'width': 3, }] for function, option in itertools.product(functions, options): function(self.G, **option) plt.savefig('test.ps') finally: try: os.unlink('test.ps') except OSError: pass
Example #4
Source File: graphs.py From pyDcop with BSD 3-Clause "New" or "Revised" License | 5 votes |
def display_graph(variables, relations): """ Display the variables and relation as a graph, using networkx and matplotlib. Parameters ---------- variables: list a list of Variable objets relations: list a list of Relation objects """ graph = as_networkx_graph(variables, relations) # Do not crash if matplotlib is not installed try: import matplotlib.pyplot as plt nx.draw_networkx(graph, with_labels=True) # nx.draw_random(graph) # nx.draw_circular(graph) # nx.draw_spectral(graph) plt.show() except ImportError: print("ERROR: cannot display graph, matplotlib is not installed")
Example #5
Source File: play.py From simulator with GNU General Public License v3.0 | 5 votes |
def update_net(self, node, edge, direction): plt.figure(1) # self.lg.info("Update net", node, edge, direction) if node: self.net_labels[node] = node if node in self.Type and self.Type[node] == "MP": if direction == "IN": self.G.add_node(node, behaviour='malicious') else: self.lg.info("simulator: {} removed from graph (MP)".format(node)) self.G.remove_node(node) del self.net_labels[node] elif node in self.Type and self.Type[node] == "M": if direction == "IN": self.G.add_node(node, behaviour='monitor') else: self.G.remove_node(node) del self.net_labels[node] else: if direction == "IN": self.G.add_node(node, behaviour='peer') else: self.G.remove_node(node) del self.net_labels[node] else: if edge[0] in self.G.nodes() and edge[1] in self.G.nodes(): if direction == "IN": self.G.add_edge(*edge, color='#000000') else: self.G.add_edge(*edge, color='r') self.net_figure.clf() edges = self.G.edges() edge_color = [self.G[u][v]['color'] for u, v in edges] node_color = [self.color_map[self.G.node[node]['behaviour']] for node in self.G] self.net_figure.suptitle("Overlay Network of the Team", size=16) nx.draw_circular(self.G, node_color=node_color, node_size=400, edge_color=edge_color, labels=self.net_labels, font_size=10, font_weight='bold') self.net_figure.canvas.draw()
Example #6
Source File: visualise_graph.py From IDTxl with GNU General Public License v3.0 | 5 votes |
def _plot_graph(graph, axis, weights=None, display_edge_labels=True): """Plot graph using networkx.""" pos = nx.circular_layout(graph) nx.draw_circular(graph, with_labels=True, node_size=600, alpha=1.0, ax=axis, node_color='Gainsboro', hold=True, font_size=14, font_weight='bold') if display_edge_labels: edge_labels = nx.get_edge_attributes(graph, weights) nx.draw_networkx_edge_labels(graph, pos, edge_labels=edge_labels, font_size=13) # font_weight='bold'
Example #7
Source File: utils.py From nasbench-1shot1 with Apache License 2.0 | 5 votes |
def draw_graph_to_adjacency_matrix(graph): """ Draws the graph in circular format for easier debugging :param graph: :return: """ dag = nx.DiGraph(graph) nx.draw_circular(dag, with_labels=True)
Example #8
Source File: graphs.py From Hands-On-Genetic-Algorithms-with-Python with MIT License | 5 votes |
def plotGraph(self, colorArrangement): """ Plots the graph with the nodes colored according to the given color arrangement :param colorArrangement: a list of integers representing the suggested color arrangement fpo the nodes, one color per node in the graph """ if len(colorArrangement) != self.__len__(): raise ValueError("size of color list should be equal to ", self.__len__()) # create a list of the unique colors in the arrangement: colorList = list(set(colorArrangement)) # create the actual colors for the integers in the color list: colors = plt.cm.rainbow(np.linspace(0, 1, len(colorList))) # iterate over the nodes, and give each one of them its corresponding color: colorMap = [] for i in range(self.__len__()): color = colors[colorList.index(colorArrangement[i])] colorMap.append(color) # plot the nodes with their labels and matching colors: nx.draw_kamada_kawai(self.graph, node_color=colorMap, with_labels=True) #nx.draw_circular(self.graph, node_color=color_map, with_labels=True) return plt # testing the class:
Example #9
Source File: graphs.py From pyDcop with BSD 3-Clause "New" or "Revised" License | 4 votes |
def display_bipartite_graph(variables, relations): """ Display the variables and relation as a graph, using networkx and matplotlib. Parameters ---------- variables: list a list of Variable objets relations: list a list of Relation objects """ graph = as_networkx_bipartite_graph(variables, relations) # Do not crash if matplotlib is not installed try: import matplotlib.pyplot as plt pos = nx.drawing.spring_layout(graph) variables = set(n for n, d in graph.nodes(data=True) if d["bipartite"] == 0) factors = set(graph) - variables nx.draw_networkx_nodes( graph, pos=pos, with_labels=True, nodelist=variables, node_shape="o", node_color="b", label="variables", alpha=0.5, ) nx.draw_networkx_nodes( graph, pos=pos, with_labels=True, nodelist=factors, node_shape="s", node_color="r", label="factors", alpha=0.5, ) nx.draw_networkx_labels(graph, pos=pos) nx.draw_networkx_edges(graph, pos=pos) # nx.draw_random(graph) # nx.draw_circular(graph) # nx.draw_spectral(graph) plt.show() except ImportError: print("ERROR: cannot display graph, matplotlib is not installed")
Example #10
Source File: cycles.py From dgl with Apache License 2.0 | 4 votes |
def rollout_and_examine(self, model, num_samples): assert not model.training, 'You need to call model.eval().' num_total_size = 0 num_valid_size = 0 num_cycle = 0 num_valid = 0 plot_times = 0 adj_lists_to_plot = [] for i in range(num_samples): sampled_graph = model() if isinstance(sampled_graph, list): # When the model is a batched implementation, a list of # DGLGraph objects is returned. Note that with model(), # we generate a single graph as with the non-batched # implementation. We actually support batched generation # during the inference so feel free to modify the code. sampled_graph = sampled_graph[0] sampled_adj_list = dglGraph_to_adj_list(sampled_graph) adj_lists_to_plot.append(sampled_adj_list) graph_size = sampled_graph.number_of_nodes() valid_size = (self.v_min <= graph_size <= self.v_max) cycle = is_cycle(sampled_graph) num_total_size += graph_size if valid_size: num_valid_size += 1 if cycle: num_cycle += 1 if valid_size and cycle: num_valid += 1 if len(adj_lists_to_plot) >= 4: plot_times += 1 fig, ((ax0, ax1), (ax2, ax3)) = plt.subplots(2, 2) axes = {0: ax0, 1: ax1, 2: ax2, 3: ax3} for i in range(4): nx.draw_circular(nx.from_dict_of_lists(adj_lists_to_plot[i]), with_labels=True, ax=axes[i]) plt.savefig(self.dir + '/samples/{:d}'.format(plot_times)) plt.close() adj_lists_to_plot = [] self.num_samples_examined = num_samples self.average_size = num_total_size / num_samples self.valid_size_ratio = num_valid_size / num_samples self.cycle_ratio = num_cycle / num_samples self.valid_ratio = num_valid / num_samples