Python networkx.is_connected() Examples
The following are 30
code examples of networkx.is_connected().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
networkx
, or try the search function
.
Example #1
Source File: utils.py From GraphRNN with MIT License | 7 votes |
def decode_graph(adj, prefix): adj = np.asmatrix(adj) G = nx.from_numpy_matrix(adj) # G.remove_nodes_from(nx.isolates(G)) print('num of nodes: {}'.format(G.number_of_nodes())) print('num of edges: {}'.format(G.number_of_edges())) G_deg = nx.degree_histogram(G) G_deg_sum = [a * b for a, b in zip(G_deg, range(0, len(G_deg)))] print('average degree: {}'.format(sum(G_deg_sum) / G.number_of_nodes())) if nx.is_connected(G): print('average path length: {}'.format(nx.average_shortest_path_length(G))) print('average diameter: {}'.format(nx.diameter(G))) G_cluster = sorted(list(nx.clustering(G).values())) print('average clustering coefficient: {}'.format(sum(G_cluster) / len(G_cluster))) cycle_len = [] cycle_all = nx.cycle_basis(G, 0) for item in cycle_all: cycle_len.append(len(item)) print('cycles', cycle_len) print('cycle count', len(cycle_len)) draw_graph(G, prefix=prefix)
Example #2
Source File: test_maxflow.py From Carnets with BSD 3-Clause "New" or "Revised" License | 6 votes |
def validate_cuts(G, s, t, solnValue, partition, capacity, flow_func): assert_true(all(n in G for n in partition[0]), msg=msg.format(flow_func.__name__)) assert_true(all(n in G for n in partition[1]), msg=msg.format(flow_func.__name__)) cutset = compute_cutset(G, partition) assert_true(all(G.has_edge(u, v) for (u, v) in cutset), msg=msg.format(flow_func.__name__)) assert_equal(solnValue, sum(G[u][v][capacity] for (u, v) in cutset), msg=msg.format(flow_func.__name__)) H = G.copy() H.remove_edges_from(cutset) if not G.is_directed(): assert_false(nx.is_connected(H), msg=msg.format(flow_func.__name__)) else: assert_false(nx.is_strongly_connected(H), msg=msg.format(flow_func.__name__))
Example #3
Source File: utils.py From graph-generation with MIT License | 6 votes |
def decode_graph(adj, prefix): adj = np.asmatrix(adj) G = nx.from_numpy_matrix(adj) # G.remove_nodes_from(nx.isolates(G)) print('num of nodes: {}'.format(G.number_of_nodes())) print('num of edges: {}'.format(G.number_of_edges())) G_deg = nx.degree_histogram(G) G_deg_sum = [a * b for a, b in zip(G_deg, range(0, len(G_deg)))] print('average degree: {}'.format(sum(G_deg_sum) / G.number_of_nodes())) if nx.is_connected(G): print('average path length: {}'.format(nx.average_shortest_path_length(G))) print('average diameter: {}'.format(nx.diameter(G))) G_cluster = sorted(list(nx.clustering(G).values())) print('average clustering coefficient: {}'.format(sum(G_cluster) / len(G_cluster))) cycle_len = [] cycle_all = nx.cycle_basis(G, 0) for item in cycle_all: cycle_len.append(len(item)) print('cycles', cycle_len) print('cycle count', len(cycle_len)) draw_graph(G, prefix=prefix)
Example #4
Source File: main.py From scTDA with GNU General Public License v3.0 | 6 votes |
def dendritic_graph(self): """ Builds skeleton of the topological representation (used internally) """ diam = networkx.diameter(self.gl) g3 = networkx.Graph() dicdend = {} for n in range(diam-1): nodedist = [] for k in self.pl: dil = networkx.shortest_path_length(self.gl, self.root, k) if dil == n: nodedist.append(str(k)) g2 = self.gl.subgraph(nodedist) dicdend[n] = sorted(networkx.connected_components(g2)) for n2, yu in enumerate(dicdend[n]): g3.add_node(str(n) + '_' + str(n2)) if n > 0: for n3, yu2 in enumerate(dicdend[n-1]): if networkx.is_connected(self.gl.subgraph(list(yu)+list(yu2))): g3.add_edge(str(n) + '_' + str(n2), str(n-1) + '_' + str(n3)) return g3, dicdend
Example #5
Source File: test_cuts.py From aws-kube-codesuite with Apache License 2.0 | 6 votes |
def test_octahedral_cutset(): G=nx.octahedral_graph() for flow_func in flow_funcs: kwargs = dict(flow_func=flow_func) # edge cuts edge_cut = nx.minimum_edge_cut(G, **kwargs) assert_equal(4, len(edge_cut), msg=msg.format(flow_func.__name__)) H = G.copy() H.remove_edges_from(edge_cut) assert_false(nx.is_connected(H), msg=msg.format(flow_func.__name__)) # node cuts node_cut = nx.minimum_node_cut(G, **kwargs) assert_equal(4, len(node_cut), msg=msg.format(flow_func.__name__)) H = G.copy() H.remove_nodes_from(node_cut) assert_false(nx.is_connected(H), msg=msg.format(flow_func.__name__))
Example #6
Source File: test_cuts.py From aws-kube-codesuite with Apache License 2.0 | 6 votes |
def test_petersen_cutset(): G = nx.petersen_graph() for flow_func in flow_funcs: kwargs = dict(flow_func=flow_func) # edge cuts edge_cut = nx.minimum_edge_cut(G, **kwargs) assert_equal(3, len(edge_cut), msg=msg.format(flow_func.__name__)) H = G.copy() H.remove_edges_from(edge_cut) assert_false(nx.is_connected(H), msg=msg.format(flow_func.__name__)) # node cuts node_cut = nx.minimum_node_cut(G, **kwargs) assert_equal(3, len(node_cut), msg=msg.format(flow_func.__name__)) H = G.copy() H.remove_nodes_from(node_cut) assert_false(nx.is_connected(H), msg=msg.format(flow_func.__name__))
Example #7
Source File: test_maxflow.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 6 votes |
def validate_cuts(G, s, t, solnValue, partition, capacity, flow_func): assert_true(all(n in G for n in partition[0]), msg=msg.format(flow_func.__name__)) assert_true(all(n in G for n in partition[1]), msg=msg.format(flow_func.__name__)) cutset = compute_cutset(G, partition) assert_true(all(G.has_edge(u, v) for (u, v) in cutset), msg=msg.format(flow_func.__name__)) assert_equal(solnValue, sum(G[u][v][capacity] for (u, v) in cutset), msg=msg.format(flow_func.__name__)) H = G.copy() H.remove_edges_from(cutset) if not G.is_directed(): assert_false(nx.is_connected(H), msg=msg.format(flow_func.__name__)) else: assert_false(nx.is_strongly_connected(H), msg=msg.format(flow_func.__name__))
Example #8
Source File: test_cuts.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 6 votes |
def test_petersen_cutset(): G = nx.petersen_graph() for flow_func in flow_funcs: kwargs = dict(flow_func=flow_func) # edge cuts edge_cut = nx.minimum_edge_cut(G, **kwargs) assert_equal(3, len(edge_cut), msg=msg.format(flow_func.__name__)) H = G.copy() H.remove_edges_from(edge_cut) assert_false(nx.is_connected(H), msg=msg.format(flow_func.__name__)) # node cuts node_cut = nx.minimum_node_cut(G, **kwargs) assert_equal(3, len(node_cut), msg=msg.format(flow_func.__name__)) H = G.copy() H.remove_nodes_from(node_cut) assert_false(nx.is_connected(H), msg=msg.format(flow_func.__name__))
Example #9
Source File: test_cuts.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 6 votes |
def test_icosahedral_cutset(): G=nx.icosahedral_graph() for flow_func in flow_funcs: kwargs = dict(flow_func=flow_func) # edge cuts edge_cut = nx.minimum_edge_cut(G, **kwargs) assert_equal(5, len(edge_cut), msg=msg.format(flow_func.__name__)) H = G.copy() H.remove_edges_from(edge_cut) assert_false(nx.is_connected(H), msg=msg.format(flow_func.__name__)) # node cuts node_cut = nx.minimum_node_cut(G, **kwargs) assert_equal(5, len(node_cut), msg=msg.format(flow_func.__name__)) H = G.copy() H.remove_nodes_from(node_cut) assert_false(nx.is_connected(H), msg=msg.format(flow_func.__name__))
Example #10
Source File: test_cuts.py From Carnets with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_icosahedral_cutset(): G = nx.icosahedral_graph() for flow_func in flow_funcs: kwargs = dict(flow_func=flow_func) # edge cuts edge_cut = nx.minimum_edge_cut(G, **kwargs) assert_equal(5, len(edge_cut), msg=msg.format(flow_func.__name__)) H = G.copy() H.remove_edges_from(edge_cut) assert_false(nx.is_connected(H), msg=msg.format(flow_func.__name__)) # node cuts node_cut = nx.minimum_node_cut(G, **kwargs) assert_equal(5, len(node_cut), msg=msg.format(flow_func.__name__)) H = G.copy() H.remove_nodes_from(node_cut) assert_false(nx.is_connected(H), msg=msg.format(flow_func.__name__))
Example #11
Source File: test_maxflow.py From aws-kube-codesuite with Apache License 2.0 | 6 votes |
def validate_cuts(G, s, t, solnValue, partition, capacity, flow_func): assert_true(all(n in G for n in partition[0]), msg=msg.format(flow_func.__name__)) assert_true(all(n in G for n in partition[1]), msg=msg.format(flow_func.__name__)) cutset = compute_cutset(G, partition) assert_true(all(G.has_edge(u, v) for (u, v) in cutset), msg=msg.format(flow_func.__name__)) assert_equal(solnValue, sum(G[u][v][capacity] for (u, v) in cutset), msg=msg.format(flow_func.__name__)) H = G.copy() H.remove_edges_from(cutset) if not G.is_directed(): assert_false(nx.is_connected(H), msg=msg.format(flow_func.__name__)) else: assert_false(nx.is_strongly_connected(H), msg=msg.format(flow_func.__name__))
Example #12
Source File: test_cuts.py From Carnets with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_petersen_cutset(): G = nx.petersen_graph() for flow_func in flow_funcs: kwargs = dict(flow_func=flow_func) # edge cuts edge_cut = nx.minimum_edge_cut(G, **kwargs) assert_equal(3, len(edge_cut), msg=msg.format(flow_func.__name__)) H = G.copy() H.remove_edges_from(edge_cut) assert_false(nx.is_connected(H), msg=msg.format(flow_func.__name__)) # node cuts node_cut = nx.minimum_node_cut(G, **kwargs) assert_equal(3, len(node_cut), msg=msg.format(flow_func.__name__)) H = G.copy() H.remove_nodes_from(node_cut) assert_false(nx.is_connected(H), msg=msg.format(flow_func.__name__))
Example #13
Source File: graphcoloring.py From pyDcop with BSD 3-Clause "New" or "Revised" License | 6 votes |
def generate_scalefree_graph(variables_count, m_edge, allow_subgraph): if not allow_subgraph: graph = nx.barabasi_albert_graph(variables_count, m_edge) is_connected = nx.is_connected(graph) while not is_connected: graph = nx.barabasi_albert_graph(variables_count, m_edge) is_connected = nx.is_connected(graph) else: graph = nx.barabasi_albert_graph(variables_count, m_edge) # In the obtained graph, low rank nodes will have a much higher edge count # than high rank nodes. We shuffle the nodes names to avoid this effect: new_nodes = list(range(variables_count)) random.shuffle(new_nodes) node_mapping = {n: nn for n, nn in zip(graph.nodes, new_nodes)} new_graph = nx.Graph((node_mapping[e1], node_mapping[e2]) for e1, e2 in graph.edges) return new_graph
Example #14
Source File: test_cuts.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_brandes_erlebach_book(): # Figure 1 chapter 7: Connectivity # http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf G = nx.Graph() G.add_edges_from([(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 6), (3, 4), (3, 6), (4, 6), (4, 7), (5, 7), (6, 8), (6, 9), (7, 8), (7, 10), (8, 11), (9, 10), (9, 11), (10, 11)]) for flow_func in flow_funcs: kwargs = dict(flow_func=flow_func) # edge cutsets assert_equal(3, len(nx.minimum_edge_cut(G, 1, 11, **kwargs)), msg=msg.format(flow_func.__name__)) edge_cut = nx.minimum_edge_cut(G, **kwargs) # Node 5 has only two edges assert_equal(2, len(edge_cut), msg=msg.format(flow_func.__name__)) H = G.copy() H.remove_edges_from(edge_cut) assert_false(nx.is_connected(H), msg=msg.format(flow_func.__name__)) # node cuts assert_equal(set([6, 7]), minimum_st_node_cut(G, 1, 11, **kwargs), msg=msg.format(flow_func.__name__)) assert_equal(set([6, 7]), nx.minimum_node_cut(G, 1, 11, **kwargs), msg=msg.format(flow_func.__name__)) node_cut = nx.minimum_node_cut(G, **kwargs) assert_equal(2, len(node_cut), msg=msg.format(flow_func.__name__)) H = G.copy() H.remove_nodes_from(node_cut) assert_false(nx.is_connected(H), msg=msg.format(flow_func.__name__))
Example #15
Source File: test_cuts.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def _generate_no_biconnected(max_attempts=50): attempts = 0 while True: G = nx.fast_gnp_random_graph(100,0.0575) if nx.is_connected(G) and not nx.is_biconnected(G): attempts = 0 yield G else: if attempts >= max_attempts: msg = "Tried %d times: no suitable Graph."%attempts raise Exception(msg % max_attempts) else: attempts += 1
Example #16
Source File: test_connected.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_is_connected(self): assert_true(nx.is_connected(self.grid)) G = nx.Graph() G.add_nodes_from([1, 2]) assert_false(nx.is_connected(G))
Example #17
Source File: connected.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def is_connected(G): """Return True if the graph is connected, false otherwise. Parameters ---------- G : NetworkX Graph An undirected graph. Returns ------- connected : bool True if the graph is connected, false otherwise. Raises ------ NetworkXNotImplemented: If G is undirected. Examples -------- >>> G = nx.path_graph(4) >>> print(nx.is_connected(G)) True See Also -------- is_strongly_connected is_weakly_connected is_semiconnected is_biconnected connected_components Notes ----- For undirected graphs only. """ if len(G) == 0: raise nx.NetworkXPointlessConcept('Connectivity is undefined ', 'for the null graph.') return len(set(_plain_bfs(G, arbitrary_element(G)))) == len(G)
Example #18
Source File: random_graphs.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def connected_watts_strogatz_graph(n, k, p, tries=100, seed=None): """Returns a connected Watts–Strogatz small-world graph. Attempts to generate a connected graph by repeated generation of Watts–Strogatz small-world graphs. An exception is raised if the maximum number of tries is exceeded. Parameters ---------- n : int The number of nodes k : int Each node is joined with its `k` nearest neighbors in a ring topology. p : float The probability of rewiring each edge tries : int Number of attempts to generate a connected graph. seed : int, optional The seed for random number generator. See Also -------- newman_watts_strogatz_graph() watts_strogatz_graph() """ for i in range(tries): G = watts_strogatz_graph(n, k, p, seed) if nx.is_connected(G): return G raise nx.NetworkXError('Maximum number of tries exceeded')
Example #19
Source File: test_treewidth.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def is_tree_decomp(graph, decomp): """Check if the given tree decomposition is valid.""" for x in graph.nodes(): appear_once = False for bag in decomp.nodes(): if x in bag: appear_once = True break ok_(appear_once) # Check if each connected pair of nodes are at least once together in a bag for (x, y) in graph.edges(): appear_together = False for bag in decomp.nodes(): if x in bag and y in bag: appear_together = True break ok_(appear_together) # Check if the nodes associated with vertex v form a connected subset of T for v in graph.nodes(): subset = [] for bag in decomp.nodes(): if v in bag: subset.append(bag) sub_graph = decomp.subgraph(subset) ok_(nx.is_connected(sub_graph))
Example #20
Source File: test_connectivity.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _generate_no_biconnected(max_attempts=50): attempts = 0 while True: G = nx.fast_gnp_random_graph(100, 0.0575, seed=42) if nx.is_connected(G) and not nx.is_biconnected(G): attempts = 0 yield G else: if attempts >= max_attempts: msg = "Tried %d times: no suitable Graph." raise Exception(msg % max_attempts) else: attempts += 1
Example #21
Source File: test_cuts.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_edge_cutset_random_graphs(): for flow_func in flow_funcs: for i in range(3): G = nx.fast_gnp_random_graph(50, 0.25, seed=42) if not nx.is_connected(G): ccs = iter(nx.connected_components(G)) start = arbitrary_element(next(ccs)) G.add_edges_from((start, arbitrary_element(c)) for c in ccs) cutset = nx.minimum_edge_cut(G, flow_func=flow_func) assert_equal(nx.edge_connectivity(G), len(cutset), msg=msg.format(flow_func.__name__)) G.remove_edges_from(cutset) assert_false(nx.is_connected(G), msg=msg.format(flow_func.__name__))
Example #22
Source File: test_cuts.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_node_cutset_random_graphs(): for flow_func in flow_funcs: for i in range(3): G = nx.fast_gnp_random_graph(50, 0.25, seed=42) if not nx.is_connected(G): ccs = iter(nx.connected_components(G)) start = arbitrary_element(next(ccs)) G.add_edges_from((start, arbitrary_element(c)) for c in ccs) cutset = nx.minimum_node_cut(G, flow_func=flow_func) assert_equal(nx.node_connectivity(G), len(cutset), msg=msg.format(flow_func.__name__)) G.remove_nodes_from(cutset) assert_false(nx.is_connected(G), msg=msg.format(flow_func.__name__))
Example #23
Source File: graphcoloring.py From pyDcop with BSD 3-Clause "New" or "Revised" License | 5 votes |
def generate_random_graph(variables_count, p_edge, allow_subgraph): if not allow_subgraph: graph = nx.gnp_random_graph(variables_count, p_edge) is_connected = nx.is_connected(graph) while not is_connected: graph = nx.gnp_random_graph(variables_count, p_edge) is_connected = nx.is_connected(graph) else: graph = nx.gnp_random_graph(variables_count, p_edge) return graph
Example #24
Source File: test_cuts.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_white_harary_paper(): # Figure 1b white and harary (2001) # http://eclectic.ss.uci.edu/~drwhite/sm-w23.PDF # A graph with high adhesion (edge connectivity) and low cohesion # (node connectivity) G = nx.disjoint_union(nx.complete_graph(4), nx.complete_graph(4)) G.remove_node(7) for i in range(4, 7): G.add_edge(0, i) G = nx.disjoint_union(G, nx.complete_graph(4)) G.remove_node(G.order() - 1) for i in range(7, 10): G.add_edge(0, i) for flow_func in flow_funcs: kwargs = dict(flow_func=flow_func) # edge cuts edge_cut = nx.minimum_edge_cut(G, **kwargs) assert_equal(3, len(edge_cut), msg=msg.format(flow_func.__name__)) H = G.copy() H.remove_edges_from(edge_cut) assert_false(nx.is_connected(H), msg=msg.format(flow_func.__name__)) # node cuts node_cut = nx.minimum_node_cut(G, **kwargs) assert_equal(set([0]), node_cut, msg=msg.format(flow_func.__name__)) H = G.copy() H.remove_nodes_from(node_cut) assert_false(nx.is_connected(H), msg=msg.format(flow_func.__name__))
Example #25
Source File: test_cuts.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_brandes_erlebach_book(): # Figure 1 chapter 7: Connectivity # http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf G = nx.Graph() G.add_edges_from([(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 6), (3, 4), (3, 6), (4, 6), (4, 7), (5, 7), (6, 8), (6, 9), (7, 8), (7, 10), (8, 11), (9, 10), (9, 11), (10, 11)]) for flow_func in flow_funcs: kwargs = dict(flow_func=flow_func) # edge cutsets assert_equal(3, len(nx.minimum_edge_cut(G, 1, 11, **kwargs)), msg=msg.format(flow_func.__name__)) edge_cut = nx.minimum_edge_cut(G, **kwargs) # Node 5 has only two edges assert_equal(2, len(edge_cut), msg=msg.format(flow_func.__name__)) H = G.copy() H.remove_edges_from(edge_cut) assert_false(nx.is_connected(H), msg=msg.format(flow_func.__name__)) # node cuts assert_equal(set([6, 7]), minimum_st_node_cut(G, 1, 11, **kwargs), msg=msg.format(flow_func.__name__)) assert_equal(set([6, 7]), nx.minimum_node_cut(G, 1, 11, **kwargs), msg=msg.format(flow_func.__name__)) node_cut = nx.minimum_node_cut(G, **kwargs) assert_equal(2, len(node_cut), msg=msg.format(flow_func.__name__)) H = G.copy() H.remove_nodes_from(node_cut) assert_false(nx.is_connected(H), msg=msg.format(flow_func.__name__))
Example #26
Source File: test_cuts.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _generate_no_biconnected(max_attempts=50): attempts = 0 while True: G = nx.fast_gnp_random_graph(100, 0.0575, seed=42) if nx.is_connected(G) and not nx.is_biconnected(G): attempts = 0 yield G else: if attempts >= max_attempts: msg = "Tried %d times: no suitable Graph." % attempts raise Exception(msg % max_attempts) else: attempts += 1
Example #27
Source File: test_kcutsets.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_alternative_flow_functions(): graphs = [nx.grid_2d_graph(4, 4), nx.cycle_graph(5)] for G in graphs: node_conn = nx.node_connectivity(G) for flow_func in flow_funcs: all_cuts = nx.all_node_cuts(G, flow_func=flow_func) # Only test a limited number of cut sets to reduce test time. for cut in itertools.islice(all_cuts, MAX_CUTSETS_TO_TEST): assert_equal(node_conn, len(cut)) assert_false(nx.is_connected(nx.restricted_view(G, cut, [])))
Example #28
Source File: motif_count.py From role2vec with GNU General Public License v3.0 | 5 votes |
def enumerate_graphs(self): """ Enumerating connected benchmark graphlets. """ graphs = graph_atlas_g() self.interesting_graphs = {i: [] for i in range(2, self.args.graphlet_size+1)} for graph in graphs: if graph.number_of_nodes() > 1 and graph.number_of_nodes() < self.args.graphlet_size+1: if nx.is_connected(graph): self.interesting_graphs[graph.number_of_nodes()].append(graph)
Example #29
Source File: test_kcutsets.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _check_separating_sets(G): for cc in nx.connected_components(G): if len(cc) < 3: continue Gc = G.subgraph(cc) node_conn = nx.node_connectivity(Gc) all_cuts = nx.all_node_cuts(Gc) # Only test a limited number of cut sets to reduce test time. for cut in itertools.islice(all_cuts, MAX_CUTSETS_TO_TEST): assert_equal(node_conn, len(cut)) assert_false(nx.is_connected(nx.restricted_view(G, cut, [])))
Example #30
Source File: test_connected.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_connected_raise(self): assert_raises(NetworkXNotImplemented, nx.connected_components, self.DG) assert_raises(NetworkXNotImplemented, nx.number_connected_components, self.DG) assert_raises(NetworkXNotImplemented, nx.node_connected_component, self.DG, 1) assert_raises(NetworkXNotImplemented, nx.is_connected, self.DG) assert_raises(nx.NetworkXPointlessConcept, nx.is_connected, nx.Graph()) # deprecated assert_raises(NetworkXNotImplemented, nx.connected_component_subgraphs, self.DG)