Python networkx.closeness_centrality() Examples
The following are 21
code examples of networkx.closeness_centrality().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
networkx
, or try the search function
.
Example #1
Source File: analyse_meg_epilepsy_clips.py From mmvt with GNU General Public License v3.0 | 8 votes |
def _calc_graph_func(p): con, times_chunk, graph_func = p vals = [] now = time.time() for run, t in enumerate(times_chunk): utils.time_to_go(now, run, len(times_chunk), 10) con_t = con[:, :, t] g = nx.from_numpy_matrix(con_t) if graph_func == 'closeness_centrality': x = nx.closeness_centrality(g) elif graph_func == 'degree_centrality': x = nx.degree_centrality(g) elif graph_func == 'eigenvector_centrality': x = nx.eigenvector_centrality(g, max_iter=10000) elif graph_func == 'katz_centrality': x = nx.katz_centrality(g, max_iter=100000) else: raise Exception('Wrong graph func!') vals.append([x[k] for k in range(len(x))]) vals = np.array(vals) return vals, times_chunk
Example #2
Source File: test_closeness_centrality.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 6 votes |
def test_florentine_families_closeness(self): c=nx.closeness_centrality(self.F) d={'Acciaiuoli': 0.368, 'Albizzi': 0.483, 'Barbadori': 0.4375, 'Bischeri': 0.400, 'Castellani': 0.389, 'Ginori': 0.333, 'Guadagni': 0.467, 'Lamberteschi': 0.326, 'Medici': 0.560, 'Pazzi': 0.286, 'Peruzzi': 0.368, 'Ridolfi': 0.500, 'Salviati': 0.389, 'Strozzi': 0.4375, 'Tornabuoni': 0.483} for n in sorted(self.F): assert_almost_equal(c[n],d[n],places=3)
Example #3
Source File: test_closeness_centrality.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_digraph(self): G = nx.path_graph(3, create_using=nx.DiGraph()) c = nx.closeness_centrality(G) cr = nx.closeness_centrality(G.reverse()) d = {0: 0.0, 1: 0.500, 2: 0.667} dr = {0: 0.667, 1: 0.500, 2: 0.0} for n in sorted(self.P3): assert_almost_equal(c[n], d[n], places=3) assert_almost_equal(cr[n], dr[n], places=3)
Example #4
Source File: test_closeness_centrality.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_weighted_closeness(self): edges = ([('s', 'u', 10), ('s', 'x', 5), ('u', 'v', 1), ('u', 'x', 2), ('v', 'y', 1), ('x', 'u', 3), ('x', 'v', 5), ('x', 'y', 2), ('y', 's', 7), ('y', 'v', 6)]) XG = nx.Graph() XG.add_weighted_edges_from(edges) c = nx.closeness_centrality(XG, distance='weight') d = {'y': 0.200, 'x': 0.286, 's': 0.138, 'u': 0.235, 'v': 0.200} for n in sorted(XG): assert_almost_equal(c[n], d[n], places=3)
Example #5
Source File: test_closeness_centrality.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_krackhardt_closeness(self): c = nx.closeness_centrality(self.K) d = {0: 0.529, 1: 0.529, 2: 0.500, 3: 0.600, 4: 0.500, 5: 0.643, 6: 0.643, 7: 0.600, 8: 0.429, 9: 0.310} for n in sorted(self.K): assert_almost_equal(c[n], d[n], places=3)
Example #6
Source File: test_closeness_centrality.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_p3_closeness(self): c = nx.closeness_centrality(self.P3) d = {0: 0.667, 1: 1.000, 2: 0.667} for n in sorted(self.P3): assert_almost_equal(c[n], d[n], places=3)
Example #7
Source File: test_closeness_centrality.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_k5_closeness(self): c = nx.closeness_centrality(self.K5) d = {0: 1.000, 1: 1.000, 2: 1.000, 3: 1.000, 4: 1.000} for n in sorted(self.K5): assert_almost_equal(c[n], d[n], places=3)
Example #8
Source File: test_closeness_centrality.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_digraph(self): G = nx.path_graph(3, create_using=nx.DiGraph()) c = nx.closeness_centrality(G) cr = nx.closeness_centrality(G, reverse=True) d = {0: 0.0, 1: 0.500, 2: 0.667} dr = {0: 0.667, 1: 0.500, 2: 0.0} for n in sorted(self.P3): assert_almost_equal(c[n], d[n], places=3) assert_almost_equal(cr[n], dr[n], places=3)
Example #9
Source File: test_closeness_centrality.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_wf_improved(self): G = nx.union(self.P4, nx.path_graph([4, 5, 6])) c = nx.closeness_centrality(G) cwf = nx.closeness_centrality(G, wf_improved=False) res = {0: 0.25, 1: 0.375, 2: 0.375, 3: 0.25, 4: 0.222, 5: 0.333, 6: 0.222} wf_res = {0: 0.5, 1: 0.75, 2: 0.75, 3: 0.5, 4: 0.667, 5: 1.0, 6: 0.667} for n in G: assert_almost_equal(c[n], res[n], places=3) assert_almost_equal(cwf[n], wf_res[n], places=3)
Example #10
Source File: test_closeness_centrality.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_weighted_closeness(self): edges = ([('s', 'u', 10), ('s', 'x', 5), ('u', 'v', 1), ('u', 'x', 2), ('v', 'y', 1), ('x', 'u', 3), ('x', 'v', 5), ('x', 'y', 2), ('y', 's', 7), ('y', 'v', 6)]) XG = nx.Graph() XG.add_weighted_edges_from(edges) c = nx.closeness_centrality(XG, distance='weight') d = {'y': 0.200, 'x': 0.286, 's': 0.138, 'u': 0.235, 'v': 0.200} for n in sorted(XG): assert_almost_equal(c[n], d[n], places=3)
Example #11
Source File: test_closeness_centrality.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_krackhardt_closeness(self): c = nx.closeness_centrality(self.K) d = {0: 0.529, 1: 0.529, 2: 0.500, 3: 0.600, 4: 0.500, 5: 0.643, 6: 0.643, 7: 0.600, 8: 0.429, 9: 0.310} for n in sorted(self.K): assert_almost_equal(c[n], d[n], places=3)
Example #12
Source File: test_closeness_centrality.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_p3_closeness(self): c = nx.closeness_centrality(self.P3) d = {0: 0.667, 1: 1.000, 2: 0.667} for n in sorted(self.P3): assert_almost_equal(c[n], d[n], places=3)
Example #13
Source File: test_closeness_centrality.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_k5_closeness(self): c = nx.closeness_centrality(self.K5) d = {0: 1.000, 1: 1.000, 2: 1.000, 3: 1.000, 4: 1.000} for n in sorted(self.K5): assert_almost_equal(c[n], d[n], places=3)
Example #14
Source File: test_closeness_centrality.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_wf_improved(self): G = nx.union(self.P4, nx.path_graph([4, 5, 6])) c = nx.closeness_centrality(G) cwf = nx.closeness_centrality(G, wf_improved=False) res = {0: 0.25, 1: 0.375, 2: 0.375, 3: 0.25, 4: 0.222, 5: 0.333, 6: 0.222} wf_res = {0: 0.5, 1: 0.75, 2: 0.75, 3: 0.5, 4: 0.667, 5: 1.0, 6: 0.667} for n in G: assert_almost_equal(c[n], res[n], places=3) assert_almost_equal(cwf[n], wf_res[n], places=3)
Example #15
Source File: graph_test.py From mmvt with GNU General Public License v3.0 | 5 votes |
def calc_closeness_centrality(p): con, times_chunk = p vals = [] now = time.time() for run, t in enumerate(times_chunk): utils.time_to_go(now, run, len(times_chunk), 10) con_t = con[:, :, t] g = nx.from_numpy_matrix(con_t) # x = nx.closeness_centrality(g) x = nx.degree_centrality(g) vals.append([x[k] for k in range(len(x))]) vals = np.array(vals) return vals, times_chunk
Example #16
Source File: test_closeness_centrality.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 5 votes |
def test_weighted_closeness(self): XG=nx.Graph() XG.add_weighted_edges_from([('s','u',10), ('s','x',5), ('u','v',1), ('u','x',2), ('v','y',1), ('x','u',3), ('x','v',5), ('x','y',2), ('y','s',7), ('y','v',6)]) c=nx.closeness_centrality(XG,distance='weight') d={'y': 0.200, 'x': 0.286, 's': 0.138, 'u': 0.235, 'v': 0.200} for n in sorted(XG): assert_almost_equal(c[n],d[n],places=3)
Example #17
Source File: test_closeness_centrality.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 5 votes |
def test_krackhardt_closeness(self): c=nx.closeness_centrality(self.K) d={0: 0.529, 1: 0.529, 2: 0.500, 3: 0.600, 4: 0.500, 5: 0.643, 6: 0.643, 7: 0.600, 8: 0.429, 9: 0.310} for n in sorted(self.K): assert_almost_equal(c[n],d[n],places=3)
Example #18
Source File: test_closeness_centrality.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 5 votes |
def test_p3_closeness(self): c=nx.closeness_centrality(self.P3) d={0: 0.667, 1: 1.000, 2: 0.667} for n in sorted(self.P3): assert_almost_equal(c[n],d[n],places=3)
Example #19
Source File: test_closeness_centrality.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 5 votes |
def test_k5_closeness(self): c=nx.closeness_centrality(self.K5) d={0: 1.000, 1: 1.000, 2: 1.000, 3: 1.000, 4: 1.000} for n in sorted(self.K5): assert_almost_equal(c[n],d[n],places=3)
Example #20
Source File: graph_score_vectorizer.py From Quadflor with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self, method='degree', analyzer=NltkNormalizer().split_and_normalize): self.analyze = analyzer self.method = method self.methods_on_digraph = {'hits', 'pagerank', 'katz'} self._get_scores = {'degree': nx.degree, 'betweenness': nx.betweenness_centrality, 'pagerank': nx.pagerank_scipy, 'hits': self._hits, 'closeness': nx.closeness_centrality, 'katz': nx.katz_centrality}[method] # Add a new value when a new vocabulary item is seen self.vocabulary = defaultdict() self.vocabulary.default_factory = self.vocabulary.__len__
Example #21
Source File: graph.py From momepy with MIT License | 4 votes |
def local_closeness_centrality( graph, radius=5, name="closeness", distance=None, weight=None ): """ Calculates local closeness for each node based on the defined distance. Subgraph is generated around each node within set radius. If ``distance=None``, radius will define topological distance, otherwise it uses values in ``distance`` attribute. Based on ``networkx.closeness_centrality``. Local closeness centrality of a node `u` is the reciprocal of the average shortest path distance to `u` over all `n-1` nodes within subgraph. .. math:: C(u) = \\frac{n - 1}{\\sum_{v=1}^{n-1} d(v, u)}, where :math:`d(v, u)` is the shortest-path distance between :math:`v` and :math:`u`, and :math:`n` is the number of nodes that can reach :math:`u`. Adapted from :cite:`porta2006`. Parameters ---------- graph : networkx.Graph Graph representing street network. Ideally generated from GeoDataFrame using :func:`momepy.gdf_to_nx` radius: int Include all neighbors of distance <= radius from n name : str, optional calculated attribute name distance : str, optional Use specified edge data key as distance. For example, setting ``distance=’weight’`` will use the edge ``weight`` to measure the distance from the node n during ego_graph generation. weight : str, optional Use the specified edge attribute as the edge distance in shortest path calculations in closeness centrality algorithm Returns ------- Graph networkx.Graph Examples -------- >>> network_graph = mm.local_closeness_centrality(network_graph, radius=400, distance='edge_length') """ warnings.warn( "local_closeness_centrality() is deprecated and will be removed in momepy 0.4.0. " "Use closeness_centrality() instead.", FutureWarning, ) return closeness_centrality( graph=graph, radius=radius, name=name, distance=distance, weight=weight )