Python networkx.max_weight_matching() Examples
The following are 30
code examples of networkx.max_weight_matching().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
networkx
, or try the search function
.
Example #1
Source File: train_bp.py From BootEA with MIT License | 6 votes |
def mwgm_networkx(pairs, sim_mat): def str_splice(prefix, index): return prefix + "_" + str(index) def remove_prefix(string): params = string.split('_') assert len(params) == 2 return int(params[-1]) prefix1 = 's' prefix2 = 't' graph = nx.Graph() for pair in pairs: graph.add_edge(str_splice(prefix1, pair[0]), str_splice(prefix2, pair[1]), weight=sim_mat[pair[0], pair[1]]) edges = nx.max_weight_matching(graph, maxcardinality=False) matching_pairs = set() for v1, v2 in edges: if v1.startswith(prefix1): s = remove_prefix(v1) t = remove_prefix(v2) else: t = remove_prefix(v1) s = remove_prefix(v2) matching_pairs.add((s, t)) return matching_pairs
Example #2
Source File: test_matching.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_trivial4(self): """Small graph""" G = nx.Graph() G.add_edge('one', 'two', weight=10) G.add_edge('two', 'three', weight=11) assert_equal(nx.max_weight_matching(G), {'three': 'two', 'two': 'three'})
Example #3
Source File: test_matching.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_negative_weights(self): """Negative weights""" G = nx.Graph() G.add_edge(1, 2, weight=2) G.add_edge(1, 3, weight=-2) G.add_edge(2, 3, weight=1) G.add_edge(2, 4, weight=-1) G.add_edge(3, 4, weight=-6) assert_edges_equal(nx.max_weight_matching(G), matching_dict_to_set({1: 2, 2: 1})) assert_edges_equal(nx.max_weight_matching(G, 1), matching_dict_to_set({1: 3, 2: 4, 3: 1, 4: 2}))
Example #4
Source File: test_matching.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_s_blossom(self): """Create S-blossom and use it for augmentation:""" G = nx.Graph() G.add_weighted_edges_from([(1, 2, 8), (1, 3, 9), (2, 3, 10), (3, 4, 7)]) assert_edges_equal(nx.max_weight_matching(G), matching_dict_to_set({1: 2, 2: 1, 3: 4, 4: 3})) G.add_weighted_edges_from([(1, 6, 5), (4, 5, 6)]) assert_edges_equal(nx.max_weight_matching(G), matching_dict_to_set({1: 6, 2: 3, 3: 2, 4: 5, 5: 4, 6: 1}))
Example #5
Source File: test_matching.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_s_t_blossom(self): """Create S-blossom, relabel as T-blossom, use for augmentation:""" G = nx.Graph() G.add_weighted_edges_from([(1, 2, 9), (1, 3, 8), (2, 3, 10), (1, 4, 5), (4, 5, 4), (1, 6, 3)]) assert_edges_equal(nx.max_weight_matching(G), matching_dict_to_set({1: 6, 2: 3, 3: 2, 4: 5, 5: 4, 6: 1})) G.add_edge(4, 5, weight=3) G.add_edge(1, 6, weight=4) assert_edges_equal(nx.max_weight_matching(G), matching_dict_to_set({1: 6, 2: 3, 3: 2, 4: 5, 5: 4, 6: 1})) G.remove_edge(1, 6) G.add_edge(3, 6, weight=4) assert_edges_equal(nx.max_weight_matching(G), matching_dict_to_set({1: 2, 2: 1, 3: 6, 4: 5, 5: 4, 6: 3}))
Example #6
Source File: test_matching.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_nested_s_blossom(self): """Create nested S-blossom, use for augmentation:""" G = nx.Graph() G.add_weighted_edges_from([(1, 2, 9), (1, 3, 9), (2, 3, 10), (2, 4, 8), (3, 5, 8), (4, 5, 10), (5, 6, 6)]) assert_equal(nx.max_weight_matching(G), matching_dict_to_set({1: 3, 2: 4, 3: 1, 4: 2, 5: 6, 6: 5}))
Example #7
Source File: test_matching.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_nested_s_blossom_expand(self): """Create nested S-blossom, augment, expand recursively:""" G = nx.Graph() G.add_weighted_edges_from([(1, 2, 8), (1, 3, 8), (2, 3, 10), (2, 4, 12), (3, 5, 12), (4, 5, 14), (4, 6, 12), (5, 7, 12), (6, 7, 14), (7, 8, 12)]) assert_edges_equal(nx.max_weight_matching(G), matching_dict_to_set({1: 2, 2: 1, 3: 5, 4: 6, 5: 3, 6: 4, 7: 8, 8: 7}))
Example #8
Source File: test_matching.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_s_blossom_relabel_expand(self): """Create S-blossom, relabel as T, expand:""" G = nx.Graph() G.add_weighted_edges_from([(1, 2, 23), (1, 5, 22), (1, 6, 15), (2, 3, 25), (3, 4, 22), (4, 5, 25), (4, 8, 14), (5, 7, 13)]) assert_edges_equal(nx.max_weight_matching(G), matching_dict_to_set({1: 6, 2: 3, 3: 2, 4: 8, 5: 7, 6: 1, 7: 5, 8: 4}))
Example #9
Source File: test_matching.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_nested_s_blossom_relabel_expand(self): """Create nested S-blossom, relabel as T, expand:""" G = nx.Graph() G.add_weighted_edges_from([(1, 2, 19), (1, 3, 20), (1, 8, 8), (2, 3, 25), (2, 4, 18), (3, 5, 18), (4, 5, 13), (4, 7, 7), (5, 6, 7)]) assert_edges_equal(nx.max_weight_matching(G), matching_dict_to_set({1: 8, 2: 3, 3: 2, 4: 7, 5: 6, 6: 5, 7: 4, 8: 1}))
Example #10
Source File: test_matching.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_nasty_blossom1(self): """Create blossom, relabel as T in more than one way, expand, augment: """ G = nx.Graph() G.add_weighted_edges_from([(1, 2, 45), (1, 5, 45), (2, 3, 50), (3, 4, 45), (4, 5, 50), (1, 6, 30), (3, 9, 35), (4, 8, 35), (5, 7, 26), (9, 10, 5)]) assert_edges_equal(nx.max_weight_matching(G), matching_dict_to_set({1: 6, 2: 3, 3: 2, 4: 8, 5: 7, 6: 1, 7: 5, 8: 4, 9: 10, 10: 9}))
Example #11
Source File: test_matching.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_nasty_blossom2(self): """Again but slightly different:""" G = nx.Graph() G.add_weighted_edges_from([(1, 2, 45), (1, 5, 45), (2, 3, 50), (3, 4, 45), (4, 5, 50), (1, 6, 30), (3, 9, 35), (4, 8, 26), (5, 7, 40), (9, 10, 5)]) assert_edges_equal(nx.max_weight_matching(G), matching_dict_to_set({1: 6, 2: 3, 3: 2, 4: 8, 5: 7, 6: 1, 7: 5, 8: 4, 9: 10, 10: 9}))
Example #12
Source File: test_matching.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_nasty_blossom_augmenting(self): """Create nested blossom, relabel as T in more than one way""" # expand outer blossom such that inner blossom ends up on an # augmenting path: G = nx.Graph() G.add_weighted_edges_from([(1, 2, 45), (1, 7, 45), (2, 3, 50), (3, 4, 45), (4, 5, 95), (4, 6, 94), (5, 6, 94), (6, 7, 50), (1, 8, 30), (3, 11, 35), (5, 9, 36), (7, 10, 26), (11, 12, 5)]) assert_edges_equal(nx.max_weight_matching(G), matching_dict_to_set({1: 8, 2: 3, 3: 2, 4: 6, 5: 9, 6: 4, 7: 10, 8: 1, 9: 5, 10: 7, 11: 12, 12: 11}))
Example #13
Source File: test_matching.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_nasty_blossom_expand_recursively(self): """Create nested S-blossom, relabel as S, expand recursively:""" G = nx.Graph() G.add_weighted_edges_from([(1, 2, 40), (1, 3, 40), (2, 3, 60), (2, 4, 55), (3, 5, 55), (4, 5, 50), (1, 8, 15), (5, 7, 30), (7, 6, 10), (8, 10, 10), (4, 9, 30)]) assert_edges_equal(nx.max_weight_matching(G), matching_dict_to_set({1: 2, 2: 1, 3: 5, 4: 9, 5: 3, 6: 7, 7: 6, 8: 10, 9: 4, 10: 8}))
Example #14
Source File: test_matching.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_trivial1(self): """Empty graph""" G = nx.Graph() assert_equal(nx.max_weight_matching(G), {})
Example #15
Source File: test_matching.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_trivial2(self): """Self loop""" G = nx.Graph() G.add_edge(0, 0, weight=100) assert_equal(nx.max_weight_matching(G), {})
Example #16
Source File: test_matching.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_trivial3(self): """Single edge""" G = nx.Graph() G.add_edge(0, 1) assert_equal(nx.max_weight_matching(G), {0: 1, 1: 0})
Example #17
Source File: test_matching.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_floating_point_weights(self): """Floating point weights""" G = nx.Graph() G.add_edge(1, 2, weight=math.pi) G.add_edge(2, 3, weight=math.exp(1)) G.add_edge(1, 3, weight=3.0) G.add_edge(1, 4, weight=math.sqrt(2.0)) assert_edges_equal(nx.max_weight_matching(G), matching_dict_to_set({1: 4, 2: 3, 3: 2, 4: 1}))
Example #18
Source File: test_matching.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_trivial5(self): """Path""" G = nx.Graph() G.add_edge(1, 2, weight=5) G.add_edge(2, 3, weight=11) G.add_edge(3, 4, weight=5) assert_equal(nx.max_weight_matching(G), {2: 3, 3: 2}) assert_equal(nx.max_weight_matching(G, 1), {1: 2, 2: 1, 3: 4, 4: 3})
Example #19
Source File: test_matching.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_floating_point_weights(self): """Floating point weights""" G = nx.Graph() G.add_edge(1, 2, weight=math.pi) G.add_edge(2, 3, weight=math.exp(1)) G.add_edge(1, 3, weight=3.0) G.add_edge(1, 4, weight=math.sqrt(2.0)) assert_equal(nx.max_weight_matching(G), {1: 4, 2: 3, 3: 2, 4: 1})
Example #20
Source File: test_matching.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_negative_weights(self): """Negative weights""" G = nx.Graph() G.add_edge(1, 2, weight=2) G.add_edge(1, 3, weight=-2) G.add_edge(2, 3, weight=1) G.add_edge(2, 4, weight=-1) G.add_edge(3, 4, weight=-6) assert_equal(nx.max_weight_matching(G), {1: 2, 2: 1}) assert_equal(nx.max_weight_matching(G, 1), {1: 3, 2: 4, 3: 1, 4: 2})
Example #21
Source File: test_matching.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_s_blossom(self): """Create S-blossom and use it for augmentation:""" G = nx.Graph() G.add_weighted_edges_from([(1, 2, 8), (1, 3, 9), (2, 3, 10), (3, 4, 7)]) assert_equal(nx.max_weight_matching(G), {1: 2, 2: 1, 3: 4, 4: 3}) G.add_weighted_edges_from([(1, 6, 5), (4, 5, 6)]) assert_equal(nx.max_weight_matching(G), {1: 6, 2: 3, 3: 2, 4: 5, 5: 4, 6: 1})
Example #22
Source File: test_matching.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_s_t_blossom(self): """Create S-blossom, relabel as T-blossom, use for augmentation:""" G = nx.Graph() G.add_weighted_edges_from([(1, 2, 9), (1, 3, 8), (2, 3, 10), (1, 4, 5), (4, 5, 4), (1, 6, 3)]) assert_equal(nx.max_weight_matching(G), {1: 6, 2: 3, 3: 2, 4: 5, 5: 4, 6: 1}) G.add_edge(4, 5, weight=3) G.add_edge(1, 6, weight=4) assert_equal(nx.max_weight_matching(G), {1: 6, 2: 3, 3: 2, 4: 5, 5: 4, 6: 1}) G.remove_edge(1, 6) G.add_edge(3, 6, weight=4) assert_equal(nx.max_weight_matching(G), {1: 2, 2: 1, 3: 6, 4: 5, 5: 4, 6: 3})
Example #23
Source File: test_matching.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_nested_s_blossom(self): """Create nested S-blossom, use for augmentation:""" G = nx.Graph() G.add_weighted_edges_from([(1, 2, 9), (1, 3, 9), (2, 3, 10), (2, 4, 8), (3, 5, 8), (4, 5, 10), (5, 6, 6)]) assert_equal(nx.max_weight_matching(G), {1: 3, 2: 4, 3: 1, 4: 2, 5: 6, 6: 5})
Example #24
Source File: test_matching.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_nested_s_blossom_expand(self): """Create nested S-blossom, augment, expand recursively:""" G = nx.Graph() G.add_weighted_edges_from([(1, 2, 8), (1, 3, 8), (2, 3, 10), (2, 4, 12), (3, 5, 12), (4, 5, 14), (4, 6, 12), (5, 7, 12), (6, 7, 14), (7, 8, 12)]) assert_equal(nx.max_weight_matching(G), {1: 2, 2: 1, 3: 5, 4: 6, 5: 3, 6: 4, 7: 8, 8: 7})
Example #25
Source File: test_matching.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_s_blossom_relabel_expand(self): """Create S-blossom, relabel as T, expand:""" G = nx.Graph() G.add_weighted_edges_from([(1, 2, 23), (1, 5, 22), (1, 6, 15), (2, 3, 25), (3, 4, 22), (4, 5, 25), (4, 8, 14), (5, 7, 13)]) assert_equal(nx.max_weight_matching(G), {1: 6, 2: 3, 3: 2, 4: 8, 5: 7, 6: 1, 7: 5, 8: 4})
Example #26
Source File: test_matching.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_nested_s_blossom_relabel_expand(self): """Create nested S-blossom, relabel as T, expand:""" G = nx.Graph() G.add_weighted_edges_from([(1, 2, 19), (1, 3, 20), (1, 8, 8), (2, 3, 25), (2, 4, 18), (3, 5, 18), (4, 5, 13), (4, 7, 7), (5, 6, 7)]) assert_equal(nx.max_weight_matching(G), {1: 8, 2: 3, 3: 2, 4: 7, 5: 6, 6: 5, 7: 4, 8: 1})
Example #27
Source File: test_matching.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_nasty_blossom1(self): """Create blossom, relabel as T in more than one way, expand, augment: """ G = nx.Graph() G.add_weighted_edges_from([(1, 2, 45), (1, 5, 45), (2, 3, 50), (3, 4, 45), (4, 5, 50), (1, 6, 30), (3, 9, 35), (4, 8, 35), (5, 7, 26), (9, 10, 5)]) assert_equal(nx.max_weight_matching(G), {1: 6, 2: 3, 3: 2, 4: 8, 5: 7, 6: 1, 7: 5, 8: 4, 9: 10, 10: 9})
Example #28
Source File: test_matching.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_nasty_blossom2(self): """Again but slightly different:""" G = nx.Graph() G.add_weighted_edges_from([(1, 2, 45), (1, 5, 45), (2, 3, 50), (3, 4, 45), (4, 5, 50), (1, 6, 30), (3, 9, 35), (4, 8, 26), (5, 7, 40), (9, 10, 5)]) assert_equal(nx.max_weight_matching(G), {1: 6, 2: 3, 3: 2, 4: 8, 5: 7, 6: 1, 7: 5, 8: 4, 9: 10, 10: 9})
Example #29
Source File: test_matching.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_nasty_blossom_augmenting(self): """Create nested blossom, relabel as T in more than one way""" # expand outer blossom such that inner blossom ends up on an # augmenting path: G = nx.Graph() G.add_weighted_edges_from([(1, 2, 45), (1, 7, 45), (2, 3, 50), (3, 4, 45), (4, 5, 95), (4, 6, 94), (5, 6, 94), (6, 7, 50), (1, 8, 30), (3, 11, 35), (5, 9, 36), (7, 10, 26), (11, 12, 5)]) assert_equal(nx.max_weight_matching(G), {1: 8, 2: 3, 3: 2, 4: 6, 5: 9, 6: 4, 7: 10, 8: 1, 9: 5, 10: 7, 11: 12, 12: 11})
Example #30
Source File: test_matching.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_nasty_blossom_expand_recursively(self): """Create nested S-blossom, relabel as S, expand recursively:""" G = nx.Graph() G.add_weighted_edges_from([(1, 2, 40), (1, 3, 40), (2, 3, 60), (2, 4, 55), (3, 5, 55), (4, 5, 50), (1, 8, 15), (5, 7, 30), (7, 6, 10), (8, 10, 10), (4, 9, 30)]) assert_equal(nx.max_weight_matching(G), {1: 2, 2: 1, 3: 5, 4: 9, 5: 3, 6: 7, 7: 6, 8: 10, 9: 4, 10: 8})