Python networkx.read_gpickle() Examples
The following are 30
code examples of networkx.read_gpickle().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
networkx
, or try the search function
.
Example #1
Source File: exp.py From GEM with BSD 3-Clause "New" or "Revised" License | 6 votes |
def call_exps(params, data_set): print('Dataset: %s' % data_set) model_hyp = json.load( open('gem/experiments/config/%s.conf' % data_set, 'r') ) if bool(params["node_labels"]): node_labels = cPickle.load( open('gem/data/%s/node_labels.pickle' % data_set, 'rb') ) else: node_labels = None di_graph = nx.read_gpickle('gem/data/%s/graph.gpickle' % data_set) for d, meth in itertools.product(params["dimensions"], params["methods"]): dim = int(d) MethClass = getattr( importlib.import_module("gem.embedding.%s" % meth), methClassMap[meth] ) hyp = {"d": dim} hyp.update(model_hyp[meth]) MethObj = MethClass(hyp) run_exps(MethObj, di_graph, data_set, node_labels, params)
Example #2
Source File: dbt_example.py From Example-Airflow-DAGs with Apache License 2.0 | 6 votes |
def dbt_dag(start_date, schedule_interval, default_args): temp_dag = DAG('gospel_.dbt_sub_dag', start_date=start_date, schedule_interval=schedule_interval, default_args=default_args) G = nx.read_gpickle('/home/airflowuser/project/graph.gpickle') def make_dbt_task(model_name): simple_model_name = model_name.split('.')[-1] dbt_task = BashOperator( task_id=model_name, bash_command='cd ~/gospel && dbt run --profile=warehouse --target=prod --non-destructive --models {simple_model_name}'.format(simple_model_name=simple_model_name), dag=temp_dag ) return dbt_task dbt_tasks = {} for node_name in set(G.nodes()): dbt_task = make_dbt_task(node_name) dbt_tasks[node_name] = dbt_task for edge in G.edges(): dbt_tasks[edge[0]].set_downstream(dbt_tasks[edge[1]]) return temp_dag
Example #3
Source File: test_gpickle.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_protocol(self): for G in [self.G, self.DG, self.MG, self.MDG, self.fG, self.fDG, self.fMG, self.fMDG]: with tempfile.TemporaryFile() as f: nx.write_gpickle(G, f, 0) f.seek(0) Gin = nx.read_gpickle(f) assert_nodes_equal(list(G.nodes(data=True)), list(Gin.nodes(data=True))) assert_edges_equal(list(G.edges(data=True)), list(Gin.edges(data=True))) assert_graphs_equal(G, Gin)
Example #4
Source File: graph_util.py From GEM with BSD 3-Clause "New" or "Revised" License | 5 votes |
def loadDynamicSBmGraph(file_perfix, length): graph_files = ['%s_%d_graph.gpickle' % (file_perfix, i) for i in range(length)] info_files = ['%s_%d_node.pkl' % (file_perfix, i) for i in range(length)] graphs = [nx.read_gpickle(graph_file) for graph_file in graph_files] nodes_comunities = [] perturbations = [] for info_file in info_files: with open(info_file, 'rb') as fp: node_infos = pickle.load(fp) nodes_comunities.append(node_infos['community']) perturbations.append(node_infos['perturbation']) return zip(graphs, nodes_comunities, perturbations)
Example #5
Source File: gpickle.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 5 votes |
def read_gpickle(path): """Read graph object in Python pickle format. Pickles are a serialized byte stream of a Python object [1]_. This format will preserve Python objects used as nodes or edges. Parameters ---------- path : file or string File or filename to write. Filenames ending in .gz or .bz2 will be uncompressed. Returns ------- G : graph A NetworkX graph Examples -------- >>> G = nx.path_graph(4) >>> nx.write_gpickle(G, "test.gpickle") >>> G = nx.read_gpickle("test.gpickle") References ---------- .. [1] http://docs.python.org/library/pickle.html """ return pickle.load(path) # fixture for nose tests
Example #6
Source File: test_gpickle.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 5 votes |
def test_gpickle(self): for G in [self.G, self.DG, self.MG, self.MDG, self.fG, self.fDG, self.fMG, self.fMDG]: (fd,fname)=tempfile.mkstemp() nx.write_gpickle(G,fname) Gin=nx.read_gpickle(fname) assert_nodes_equal(G.nodes(data=True), Gin.nodes(data=True)) assert_edges_equal(G.edges(data=True), Gin.edges(data=True)) assert_graphs_equal(G, Gin) os.close(fd) os.unlink(fname)
Example #7
Source File: test_gpickle.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 5 votes |
def test_protocol(self): for G in [self.G, self.DG, self.MG, self.MDG, self.fG, self.fDG, self.fMG, self.fMDG]: with tempfile.TemporaryFile() as f: nx.write_gpickle(G, f, 0) f.seek(0) Gin = nx.read_gpickle(f) assert_nodes_equal(G.nodes(data=True), Gin.nodes(data=True)) assert_edges_equal(G.edges(data=True), Gin.edges(data=True)) assert_graphs_equal(G, Gin)
Example #8
Source File: test_maxflow_large_graph.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 5 votes |
def read_graph(name): dirname = os.path.dirname(__file__) path = os.path.join(dirname, name + '.gpickle.bz2') return nx.read_gpickle(path)
Example #9
Source File: test_mincost.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 5 votes |
def test_large(self): fname = os.path.join(os.path.dirname(__file__), 'netgen-2.gpickle.bz2') G = nx.read_gpickle(fname) flowCost, flowDict = nx.network_simplex(G) assert_equal(6749969302, flowCost) assert_equal(6749969302, nx.cost_of_flow(G, flowDict)) flowCost, flowDict = nx.capacity_scaling(G) assert_equal(6749969302, flowCost) assert_equal(6749969302, nx.cost_of_flow(G, flowDict))
Example #10
Source File: gpickle.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def read_gpickle(path): """Read graph object in Python pickle format. Pickles are a serialized byte stream of a Python object [1]_. This format will preserve Python objects used as nodes or edges. Parameters ---------- path : file or string File or filename to write. Filenames ending in .gz or .bz2 will be uncompressed. Returns ------- G : graph A NetworkX graph Examples -------- >>> G = nx.path_graph(4) >>> nx.write_gpickle(G, "test.gpickle") >>> G = nx.read_gpickle("test.gpickle") References ---------- .. [1] https://docs.python.org/2/library/pickle.html """ return pickle.load(path) # fixture for nose tests
Example #11
Source File: test_gpickle.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_gpickle(self): for G in [self.G, self.DG, self.MG, self.MDG, self.fG, self.fDG, self.fMG, self.fMDG]: (fd, fname) = tempfile.mkstemp() nx.write_gpickle(G, fname) Gin = nx.read_gpickle(fname) assert_nodes_equal(list(G.nodes(data=True)), list(Gin.nodes(data=True))) assert_edges_equal(list(G.edges(data=True)), list(Gin.edges(data=True))) assert_graphs_equal(G, Gin) os.close(fd) os.unlink(fname)
Example #12
Source File: graph_util.py From GEM with BSD 3-Clause "New" or "Revised" License | 5 votes |
def loadRealGraphSeries(file_prefix, startId, endId): graphs = [] for file_id in range(startId, endId + 1): graph_file = file_prefix + str(file_id) + '_graph.gpickle' graphs.append(nx.read_gpickle(graph_file)) return graphs
Example #13
Source File: test_maxflow_large_graph.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def read_graph(name): dirname = os.path.dirname(__file__) path = os.path.join(dirname, name + '.gpickle.bz2') return nx.read_gpickle(path)
Example #14
Source File: test_mincost.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_large(self): fname = os.path.join(os.path.dirname(__file__), 'netgen-2.gpickle.bz2') G = nx.read_gpickle(fname) flowCost, flowDict = nx.network_simplex(G) assert_equal(6749969302, flowCost) assert_equal(6749969302, nx.cost_of_flow(G, flowDict)) flowCost, flowDict = nx.capacity_scaling(G) assert_equal(6749969302, flowCost) assert_equal(6749969302, nx.cost_of_flow(G, flowDict))
Example #15
Source File: gpickle.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def read_gpickle(path): """Read graph object in Python pickle format. Pickles are a serialized byte stream of a Python object [1]_. This format will preserve Python objects used as nodes or edges. Parameters ---------- path : file or string File or filename to write. Filenames ending in .gz or .bz2 will be uncompressed. Returns ------- G : graph A NetworkX graph Examples -------- >>> G = nx.path_graph(4) >>> nx.write_gpickle(G, "test.gpickle") >>> G = nx.read_gpickle("test.gpickle") References ---------- .. [1] https://docs.python.org/2/library/pickle.html """ return pickle.load(path) # fixture for nose tests
Example #16
Source File: test_gpickle.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_gpickle(self): for G in [self.G, self.DG, self.MG, self.MDG, self.fG, self.fDG, self.fMG, self.fMDG]: (fd,fname)=tempfile.mkstemp() nx.write_gpickle(G,fname) Gin=nx.read_gpickle(fname) assert_nodes_equal(list(G.nodes(data=True)), list(Gin.nodes(data=True))) assert_edges_equal(list(G.edges(data=True)), list(Gin.edges(data=True))) assert_graphs_equal(G, Gin) os.close(fd) os.unlink(fname)
Example #17
Source File: test_gpickle.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_protocol(self): for G in [self.G, self.DG, self.MG, self.MDG, self.fG, self.fDG, self.fMG, self.fMDG]: with tempfile.TemporaryFile() as f: nx.write_gpickle(G, f, 0) f.seek(0) Gin = nx.read_gpickle(f) assert_nodes_equal(list(G.nodes(data=True)), list(Gin.nodes(data=True))) assert_edges_equal(list(G.edges(data=True)), list(Gin.edges(data=True))) assert_graphs_equal(G, Gin)
Example #18
Source File: test_maxflow_large_graph.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def read_graph(name): dirname = os.path.dirname(__file__) path = os.path.join(dirname, name + '.gpickle.bz2') return nx.read_gpickle(path)
Example #19
Source File: test_mincost.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def test_large(self): fname = os.path.join(os.path.dirname(__file__), 'netgen-2.gpickle.bz2') G = nx.read_gpickle(fname) flowCost, flowDict = nx.network_simplex(G) assert_equal(6749969302, flowCost) assert_equal(6749969302, nx.cost_of_flow(G, flowDict)) flowCost, flowDict = nx.capacity_scaling(G) assert_equal(6749969302, flowCost) assert_equal(6749969302, nx.cost_of_flow(G, flowDict))
Example #20
Source File: safe_io.py From safepy with GNU General Public License v3.0 | 5 votes |
def load_network_from_gpickle(filename, verbose=True): filename = re.sub('~', expanduser('~'), filename) G = nx.read_gpickle(filename) return G
Example #21
Source File: word_net.py From pytorch_geometric with MIT License | 5 votes |
def process(self): G = nx.read_gpickle(self.raw_paths[0]) data = [[v, w, d['e_label'].item()] for v, w, d in G.edges(data=True)] edge_index = torch.tensor(data)[:, :2].t().contiguous() edge_type = torch.tensor(data)[:, 2] data = Data(edge_index=edge_index, edge_type=edge_type, num_nodes=G.number_of_nodes()) if self.pre_transform is not None: data = self.pre_filter(data) torch.save(self.collate([data]), self.processed_paths[0])
Example #22
Source File: rdf.py From dgl with Apache License 2.0 | 5 votes |
def load_cache(self): mg = nx.read_gpickle(os.path.join(self._dir, 'cached_mg.gpickle')) src = np.load(os.path.join(self._dir, 'cached_src.npy')) dst = np.load(os.path.join(self._dir, 'cached_dst.npy')) ntid = np.load(os.path.join(self._dir, 'cached_ntid.npy')) etid = np.load(os.path.join(self._dir, 'cached_etid.npy')) ntypes = load_strlist(os.path.join(self._dir, 'cached_ntypes.txt')) etypes = load_strlist(os.path.join(self._dir, 'cached_etypes.txt')) self.train_idx = F.tensor(np.load(os.path.join(self._dir, 'cached_train_idx.npy'))) self.test_idx = F.tensor(np.load(os.path.join(self._dir, 'cached_test_idx.npy'))) labels = np.load(os.path.join(self._dir, 'cached_labels.npy')) self.num_classes = labels.max() + 1 self.labels = F.tensor(labels) self.build_graph(mg, src, dst, ntid, etid, ntypes, etypes)
Example #23
Source File: gpickle.py From pybel with MIT License | 5 votes |
def from_pickle(path: Union[str, BinaryIO], check_version: bool = True) -> BELGraph: """Read a graph from a pickle file. :param path: File or filename to read. Filenames ending in .gz or .bz2 will be uncompressed. :param bool check_version: Checks if the graph was produced by this version of PyBEL """ graph = nx.read_gpickle(path) raise_for_not_bel(graph) if check_version: raise_for_old_graph(graph) return graph
Example #24
Source File: networkx.py From Verum with Apache License 2.0 | 5 votes |
def read_graph(self, subgraph_file=None): if subgraph_file is None: subraph_file = self.context_graph_file logging.info("Writing graph.") # write the graph out file_format = subgraph_file.split(".")[-1] if file_format == "graphml": return nx.read_graphml(subgraph_file) elif file_format == "gml": return nx.read_gml(subgraph_file) elif file_format == "gexf": return nx.read_gexf(subgraph_file) elif file_format == "net": return nx.read_pajek(subgraph_file) elif file_format == "yaml": return nx.read_yaml(subgraph_file) elif file_format == "gpickle": return nx.read_gpickle(subgraph_file) else: logging.warning("File format not found, returning empty graph.") return nx.MultiDiGraph()
Example #25
Source File: graph_util.py From GEM-Benchmark with BSD 3-Clause "New" or "Revised" License | 5 votes |
def loadSBMGraph(file_prefix): graph_file = file_prefix + '_graph.gpickle' G = nx.read_gpickle(graph_file) node_file = file_prefix + '_node.pkl' with open(node_file, 'rb') as fp: node_community = pickle.load(fp) return (G, node_community)
Example #26
Source File: graph_util.py From GEM-Benchmark with BSD 3-Clause "New" or "Revised" License | 5 votes |
def loadRealGraphSeries(file_prefix, startId, endId): graphs = [] for file_id in range(startId, endId + 1): graph_file = file_prefix + str(file_id) + '_graph.gpickle' graphs.append(nx.read_gpickle(graph_file)) return graphs
Example #27
Source File: graph_util.py From GEM-Benchmark with BSD 3-Clause "New" or "Revised" License | 5 votes |
def loadDynamicSBmGraph(file_perfix, length): graph_files = ['%s_%d_graph.gpickle' % (file_perfix, i) for i in xrange(length)] info_files = ['%s_%d_node.pkl' % (file_perfix, i) for i in xrange(length)] graphs = [nx.read_gpickle(graph_file) for graph_file in graph_files] nodes_comunities = [] perturbations = [] for info_file in info_files: with open(info_file, 'rb') as fp: node_infos = pickle.load(fp) nodes_comunities.append(node_infos['community']) perturbations.append(node_infos['perturbation']) return zip(graphs, nodes_comunities, perturbations)
Example #28
Source File: fieldnetwork.py From aurum-datadiscovery with MIT License | 5 votes |
def deserialize_network(path): G = nx.read_gpickle(path + "graph.pickle") id_to_info = nx.read_gpickle(path + "id_info.pickle") table_to_ids = nx.read_gpickle(path + "table_ids.pickle") network = FieldNetwork(G, id_to_info, table_to_ids) return network
Example #29
Source File: network.py From lndmanage with MIT License | 5 votes |
def cached_reading_graph_edges(self): """ Checks if networkx and edges dictionary pickles are present. If they are older than CACHING_RETENTION_MINUTES, make fresh pickles, else read them from the files. """ cache_dir = os.path.join(settings.home_dir, 'cache') if not os.path.exists(cache_dir): os.mkdir(cache_dir) cache_edges_filename = os.path.join(cache_dir, 'graph.gpickle') cache_graph_filename = os.path.join(cache_dir, 'edges.gpickle') try: timestamp_graph = os.path.getmtime(cache_graph_filename) except FileNotFoundError: timestamp_graph = 0 # set very old timestamp if timestamp_graph < time.time() - settings.CACHING_RETENTION_MINUTES * 60: # old graph in file logger.info(f"Saved graph is too old. Fetching new one.") self.set_graph_and_edges() nx.write_gpickle(self.graph, cache_graph_filename) with open(cache_edges_filename, 'wb') as file: pickle.dump(self.edges, file) else: # recent graph in file logger.info("Reading graph from file.") self.graph = nx.read_gpickle(cache_graph_filename) with open(cache_edges_filename, 'rb') as file: self.edges = pickle.load(file)
Example #30
Source File: pathfinder.py From KagNet with MIT License | 5 votes |
def load_cpnet(): global cpnet,concept2id, relation2id, id2relation, id2concept, cpnet_simple print("loading cpnet....") cpnet = nx.read_gpickle(config["paths"]["conceptnet_en_graph"]) print("Done") cpnet_simple = nx.Graph() for u, v, data in cpnet.edges(data=True): w = data['weight'] if 'weight' in data else 1.0 if cpnet_simple.has_edge(u, v): cpnet_simple[u][v]['weight'] += w else: cpnet_simple.add_edge(u, v, weight=w)