Python matplotlib.mlab.normpdf() Examples
The following are 13
code examples of matplotlib.mlab.normpdf().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
matplotlib.mlab
, or try the search function
.
Example #1
Source File: bar-plots.py From matplotlib-style-gallery with BSD 3-Clause "New" or "Revised" License | 6 votes |
def histogram_demo(ax): # example data mu = 100 # mean of distribution sigma = 15 # standard deviation of distribution x = mu + sigma * np.random.randn(10000) num_bins = 50 # The histogram of the data. _, bins, _ = ax.hist(x, num_bins, normed=1, label='data') # Add a 'best fit' line. y = mlab.normpdf(bins, mu, sigma) ax.plot(bins, y, '-s', label='best fit') ax.legend() ax.set_xlabel('Smarts') ax.set_ylabel('Probability') ax.set_title(r'Histogram of IQ: $\mu=100$, $\sigma=15$')
Example #2
Source File: qc.py From SAMRI with GNU General Public License v3.0 | 6 votes |
def plot_t_value_hist( img_path='~/ni_data/ofM.dr/l1/as_composite/sub-5703/ses-ofM/sub-5703_ses-ofM_task-EPI_CBV_chr_longSOA_tstat.nii.gz', roi_path='~/ni_data/templates/roi/DSURQEc_ctx.nii.gz', mask_path='/usr/share/mouse-brain-atlases/dsurqec_200micron_mask.nii', save_as='~/qc_tvalues.pdf', ): """Make t-value histogram plot""" f, axarr = plt.subplots(1, sharex=True) roi = nib.load(path.expanduser(roi_path)) roi_data = roi.get_data() mask = nib.load(path.expanduser(mask_path)) mask_data = mask.get_data() idx = np.nonzero(np.multiply(roi_data,mask_data)) img = nib.load(path.expanduser(img_path)) data = img.get_data()[idx] (mu, sigma) = norm.fit(data) n, bins, patches = axarr.hist(data,'auto',normed=1, facecolor='green', alpha=0.75) y = mlab.normpdf(bins, mu, sigma) axarr.plot(bins, y, 'r--', linewidth=2) axarr.set_title('Histogram of t-values $\mathrm{(\mu=%.3f,\ \sigma=%.3f}$)' %(mu, sigma)) axarr.set_xlabel('t-values') plt.savefig(path.expanduser(save_as))
Example #3
Source File: latent_variables.py From pyflux with BSD 3-Clause "New" or "Revised" License | 6 votes |
def plot_z(self,figsize=(15,5)): import matplotlib.pyplot as plt import seaborn as sns if hasattr(self, 'sample'): sns.distplot(self.prior.transform(self.sample), rug=False, hist=False,label=self.method + ' estimate of ' + self.name) elif hasattr(self, 'value') and hasattr(self, 'std'): x = np.linspace(self.value-self.std*3.5,self.value+self.std*3.5,100) plt.figure(figsize=figsize) if self.prior.transform_name is None: plt.plot(x,mlab.normpdf(x,self.value,self.std),label=self.method + ' estimate of ' + self.name) else: sims = self.prior.transform(np.random.normal(self.value,self.std,100000)) sns.distplot(sims, rug=False, hist=False,label=self.method + ' estimate of ' + self.name) plt.xlabel('Value') plt.legend() plt.show() else: raise ValueError("No information on latent variable to plot!")
Example #4
Source File: burst_plot.py From FRETBursts with GNU General Public License v2.0 | 5 votes |
def _fitted_E_plot(d, i=0, F=1, no_E=False, ax=None, show_model=True, verbose=False, two_gauss_model=False, lw=2.5, color='k', alpha=0.5, fillcolor=None): """Plot a fitted model overlay on a FRET histogram.""" if ax is None: ax2 = gca() else: ax2 = plt.twinx(ax=ax) ax2.grid(False) if d.fit_E_curve and show_model: x = r_[-0.2:1.21:0.002] y = d.fit_E_model(x, d.fit_E_res[i, :]) scale = F*d.fit_E_model_F[i] if two_gauss_model: assert d.fit_E_res.shape[1] > 2 if d.fit_E_res.shape[1] == 5: m1, s1, m2, s2, a1 = d.fit_E_res[i, :] a2 = (1-a1) elif d.fit_E_res.shape[1] == 6: m1, s1, a1, m2, s2, a2 = d.fit_E_res[i, :] y1 = a1*normpdf(x, m1, s1) y2 = a2*normpdf(x, m2, s2) ax2.plot(x, scale*y1, ls='--', lw=lw, alpha=alpha, color=color) ax2.plot(x, scale*y2, ls='--', lw=lw, alpha=alpha, color=color) if fillcolor is None: ax2.plot(x, scale*y, lw=lw, alpha=alpha, color=color) else: ax2.fill_between(x, scale*y, lw=lw, alpha=alpha, edgecolor=color, facecolor=fillcolor, zorder=10) if verbose: print('Fit Integral:', np.trapz(scale*y, x)) ax2.axvline(d.E_fit[i], lw=3, color=red, ls='--', alpha=0.6) xtext = 0.6 if d.E_fit[i] < 0.6 else 0.2 if d.nch > 1 and not no_E: ax2.text(xtext, 0.81, "CH%d: $E_{fit} = %.3f$" % (i+1, d.E_fit[i]), transform=gca().transAxes, fontsize=16, bbox=dict(boxstyle='round', facecolor='#dedede', alpha=0.5))
Example #5
Source File: samples.py From MDT with GNU Lesser General Public License v3.0 | 5 votes |
def _rerender(self): nmr_maps = len(self.maps_to_show) if self._show_trace: nmr_maps *= 2 grid = GridSpec(nmr_maps, 1, left=0.04, right=0.96, top=0.94, bottom=0.06, hspace=0.2) i = 0 for map_name in self.maps_to_show: samples = self._voxels[map_name] if self._sample_indices is not None: samples = samples[:, self._sample_indices] title = map_name if map_name in self.names: title = self.names[map_name] if isinstance(self._nmr_bins, dict) and map_name in self._nmr_bins: nmr_bins = self._nmr_bins[map_name] else: nmr_bins = self._nmr_bins hist_plot = plt.subplot(grid[i]) try: n, bins, patches = hist_plot.hist(np.nan_to_num(samples[self.voxel_ind, :]), nmr_bins, normed=True) plt.title(title) i += 1 if self._fit_gaussian: mu, sigma = norm.fit(samples[self.voxel_ind, :]) bincenters = 0.5*(bins[1:] + bins[:-1]) y = mlab.normpdf(bincenters, mu, sigma) hist_plot.plot(bincenters, y, 'r', linewidth=1) if self._show_trace: trace_plot = plt.subplot(grid[i]) trace_plot.plot(samples[self.voxel_ind, :]) i += 1 except IndexError: pass
Example #6
Source File: histogramplot.py From incubator-sdap-nexus with Apache License 2.0 | 5 votes |
def render(d, x, primary, secondary, parameter, norm_and_curve=False): fig, ax = plt.subplots() fig.suptitle(string.upper("%s vs. %s" % (primary, secondary)), fontsize=14, fontweight='bold') n, bins, patches = plt.hist(x, 50, normed=norm_and_curve, facecolor='green', alpha=0.75) if norm_and_curve: mean = np.mean(x) variance = np.var(x) sigma = np.sqrt(variance) y = mlab.normpdf(bins, mean, sigma) l = plt.plot(bins, y, 'r--', linewidth=1) ax.set_title('n = %d' % len(x)) units = PARAMETER_TO_UNITS[parameter] if parameter in PARAMETER_TO_UNITS else PARAMETER_TO_UNITS["sst"] ax.set_xlabel("%s - %s %s" % (primary, secondary, units)) if norm_and_curve: ax.set_ylabel("Probability per unit difference") else: ax.set_ylabel("Frequency") plt.grid(True) sio = StringIO() plt.savefig(sio, format='png') d['plot'] = sio.getvalue()
Example #7
Source File: aggregation.py From acl2017-interactive_summarizer with Apache License 2.0 | 5 votes |
def plot_distribution(self, mean, sigma, array): vlines = [mean-(1*sigma), mean, mean+(1*sigma)] for val in vlines: plt.axvline(val, color='k', linestyle='--') bins = np.linspace(mean-(4*sigma), mean+(4*sigma), 200) plt.hist(array, bins, alpha=0.5) y = mlab.normpdf(bins, mean, sigma) plt.plot(bins, y, 'r--') plt.subplots_adjust(left=0.15) plt.show() print mean, sigma
Example #8
Source File: aggregation_new.py From acl2017-interactive_summarizer with Apache License 2.0 | 5 votes |
def plot_distribution(self, mean, sigma, array): vlines = [mean-(1*sigma), mean, mean+(1*sigma)] for val in vlines: plt.axvline(val, color='k', linestyle='--') bins = np.linspace(mean-(4*sigma), mean+(4*sigma), 200) plt.hist(array, bins, alpha=0.5) y = mlab.normpdf(bins, mean, sigma) plt.plot(bins, y, 'r--') plt.subplots_adjust(left=0.15) plt.show() print(mean, sigma)
Example #9
Source File: aggregation_old.py From acl2017-interactive_summarizer with Apache License 2.0 | 5 votes |
def plot_distribution(self, mean, sigma, array): vlines = [mean-(1*sigma), mean, mean+(1*sigma)] for val in vlines: plt.axvline(val, color='k', linestyle='--') bins = np.linspace(mean-(4*sigma), mean+(4*sigma), 200) plt.hist(array, bins, alpha=0.5) y = mlab.normpdf(bins, mean, sigma) plt.plot(bins, y, 'r--') plt.subplots_adjust(left=0.15) plt.show() print mean, sigma
Example #10
Source File: latent_variables.py From pyflux with BSD 3-Clause "New" or "Revised" License | 5 votes |
def plot_z(self,indices=None,figsize=(15,5),loc=1): import matplotlib.pyplot as plt import matplotlib.mlab as mlab import seaborn as sns plt.figure(figsize=figsize) for z in range(1,len(self.z_list)+1): if indices is not None and z-1 not in indices: continue else: if hasattr(self.z_list[z-1], 'sample'): sns.distplot(self.z_list[z-1].prior.transform(self.z_list[z-1].sample), rug=False, hist=False,label=self.z_list[z-1].method + ' estimate of ' + self.z_list[z-1].name) elif hasattr(self.z_list[z-1], 'value') and hasattr(self.z_list[z-1], 'std'): if self.z_list[z-1].prior.transform_name is None: x = np.linspace(self.z_list[z-1].value-self.z_list[z-1].std*3.5,self.z_list[z-1].value+self.z_list[z-1].std*3.5,100) plt.plot(x,mlab.normpdf(x,self.z_list[z-1].value,self.z_list[z-1].std),label=self.z_list[z-1].method + ' estimate of ' + self.z_list[z-1].name) else: sims = self.z_list[z-1].prior.transform(np.random.normal(self.z_list[z-1].value,self.z_list[z-1].std,100000)) sns.distplot(sims, rug=False, hist=False,label=self.z_list[z-1].method + ' estimate of ' + self.z_list[z-1].name) else: raise ValueError("No information on latent variable to plot!") plt.xlabel('Value') plt.ylabel('Frequency') plt.title('Latent Variable Plot') plt.legend(loc=1) plt.show()
Example #11
Source File: spectre.py From myScripts with GNU General Public License v2.0 | 5 votes |
def makeSpectre(transitions, sigma, step): """ Build a spectrum from transitions energies. For each transitions a gaussian function of width sigma is added in order to mimick natural broadening. :param transitions: list of transitions for readTransitions() :type transititions: list :param sigma: gaussian width in eV :type sigma: float :param step: number of absissa value :type step: int :return: absissa and spectrum value in this order :rtype: list, list """ # max and min transition energies minval = min([val[0] for val in transitions]) - 5.0 * sigma maxval = max([val[0] for val in transitions]) + 5.0 * sigma # points npts = int((maxval - minval) / step) + 1 # absice eneval = sp.linspace(minval, maxval, npts) spectre = sp.zeros(npts) for trans in transitions: spectre += trans[2] * normpdf(eneval, trans[0], sigma) return eneval, spectre
Example #12
Source File: impedances_clustering.py From GridCal with GNU General Public License v3.0 | 5 votes |
def plot_normal(ax, arr): """ :param ax: :param mu: :param variance: :return: """ mu = arr.mean() variance = arr.var() sigma = math.sqrt(variance) x = np.linspace(mu - 6 * sigma, mu + 6 * sigma, 100) if mu != 0 and sigma != 0: ax.plot(x, mlab.normpdf(x, mu, sigma))
Example #13
Source File: plot.py From ANTsPy with Apache License 2.0 | 4 votes |
def plot_hist( image, threshold=0.0, fit_line=False, normfreq=True, ## plot label arguments title=None, grid=True, xlabel=None, ylabel=None, ## other plot arguments facecolor="green", alpha=0.75, ): """ Plot a histogram from an ANTsImage Arguments --------- image : ANTsImage image from which histogram will be created """ img_arr = image.numpy().flatten() img_arr = img_arr[np.abs(img_arr) > threshold] if normfreq != False: normfreq = 1.0 if normfreq == True else normfreq n, bins, patches = plt.hist( img_arr, 50, normed=normfreq, facecolor=facecolor, alpha=alpha ) if fit_line: # add a 'best fit' line y = mlab.normpdf(bins, img_arr.mean(), img_arr.std()) l = plt.plot(bins, y, "r--", linewidth=1) if xlabel is not None: plt.xlabel(xlabel) if ylabel is not None: plt.ylabel(ylabel) if title is not None: plt.title(title) plt.grid(grid) plt.show()