Python matplotlib.mlab.bivariate_normal() Examples
The following are 11
code examples of matplotlib.mlab.bivariate_normal().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
matplotlib.mlab
, or try the search function
.
Example #1
Source File: test_plotting.py From cesiumpy with Apache License 2.0 | 7 votes |
def test_contour_xyz(self): _skip_if_no_matplotlib() import numpy as np import matplotlib.mlab as mlab delta = 0.025 x = np.arange(-3.0, 3.0, delta) y = np.arange(-2.0, 2.0, delta) X, Y = np.meshgrid(x, y) Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0) Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1) # difference of Gaussians Z = 10.0 * (Z2 - Z1) viewer = cesiumpy.Viewer() viewer.plot.contour(X, Y, Z) self.assertEqual(len(viewer.entities), 7) self.assertTrue(all(isinstance(x, cesiumpy.Polyline) for x in viewer.entities)) self.assertEqual(viewer.entities[0].material, cesiumpy.color.Color(0.0, 0.0, 0.5, 1.0))
Example #2
Source File: axes3d.py From Computable with MIT License | 6 votes |
def get_test_data(delta=0.05): ''' Return a tuple X, Y, Z with a test data set. ''' from matplotlib.mlab import bivariate_normal x = y = np.arange(-3.0, 3.0, delta) X, Y = np.meshgrid(x, y) Z1 = bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0) Z2 = bivariate_normal(X, Y, 1.5, 0.5, 1, 1) Z = Z2 - Z1 X = X * 10 Y = Y * 10 Z = Z * 500 return X, Y, Z ######################################################## # Register Axes3D as a 'projection' object available # for use just like any other axes ########################################################
Example #3
Source File: axes3d.py From matplotlib-4-abaqus with MIT License | 6 votes |
def get_test_data(delta=0.05): ''' Return a tuple X, Y, Z with a test data set. ''' from matplotlib.mlab import bivariate_normal x = y = np.arange(-3.0, 3.0, delta) X, Y = np.meshgrid(x, y) Z1 = bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0) Z2 = bivariate_normal(X, Y, 1.5, 0.5, 1, 1) Z = Z2 - Z1 X = X * 10 Y = Y * 10 Z = Z * 500 return X, Y, Z ######################################################## # Register Axes3D as a 'projection' object available # for use just like any other axes ########################################################
Example #4
Source File: test_contour.py From neural-network-animation with MIT License | 6 votes |
def test_labels(): # Adapted from pylab_examples example code: contour_demo.py # see issues #2475, #2843, and #2818 for explanation delta = 0.025 x = np.arange(-3.0, 3.0, delta) y = np.arange(-2.0, 2.0, delta) X, Y = np.meshgrid(x, y) Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0) Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1) # difference of Gaussians Z = 10.0 * (Z2 - Z1) fig, ax = plt.subplots(1, 1) CS = ax.contour(X, Y, Z) disp_units = [(216, 177), (359, 290), (521, 406)] data_units = [(-2, .5), (0, -1.5), (2.8, 1)] CS.clabel() for x, y in data_units: CS.add_label_near(x, y, inline=True, transform=None) for x, y in disp_units: CS.add_label_near(x, y, inline=True, transform=False)
Example #5
Source File: axes3d.py From opticspy with MIT License | 6 votes |
def get_test_data(delta=0.05): ''' Return a tuple X, Y, Z with a test data set. ''' from matplotlib.mlab import bivariate_normal x = y = np.arange(-3.0, 3.0, delta) X, Y = np.meshgrid(x, y) Z1 = bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0) Z2 = bivariate_normal(X, Y, 1.5, 0.5, 1, 1) Z = Z2 - Z1 X = X * 10 Y = Y * 10 Z = Z * 500 return X, Y, Z ######################################################## # Register Axes3D as a 'projection' object available # for use just like any other axes ########################################################
Example #6
Source File: eval_hand.py From DL-Seq2Seq with MIT License | 6 votes |
def gauss_params_plot(strokes, title ='Distribution of Gaussian Mixture parameters', figsize = (20,2)): plt.figure(figsize=figsize) import matplotlib.mlab as mlab buff = 1 ; epsilon = 1e-4 minx, maxx = np.min(strokes[:,0])-buff, np.max(strokes[:,0])+buff miny, maxy = np.min(strokes[:,1])-buff, np.max(strokes[:,1])+buff delta = abs(maxx-minx)/400. ; x = np.arange(minx, maxx, delta) y = np.arange(miny, maxy, delta) X, Y = np.meshgrid(x, y) Z = np.zeros_like(X) for i in range(strokes.shape[0]): gauss = mlab.bivariate_normal(X, Y, mux=strokes[i,0], muy=strokes[i,1], \ sigmax=strokes[i,2], sigmay=strokes[i,3], sigmaxy=0) # sigmaxy=strokes[i,4] gives error Z += gauss * np.power(strokes[i,3] + strokes[i,2], .4) / (np.max(gauss) + epsilon) plt.title(title, fontsize=20) plt.imshow(np.flipud(Z), cmap=cm.gnuplot)
Example #7
Source File: __init__.py From 3DGCN with MIT License | 5 votes |
def calcAtomGaussians(mol, a=0.03, step=0.02, weights=None): """ useful things to do with these: fig.axes[0].imshow(z,cmap=cm.gray,interpolation='bilinear',origin='lower',extent=(0,1,0,1)) fig.axes[0].contour(x,y,z,20,colors='k') fig=Draw.MolToMPL(m); contribs=Crippen.rdMolDescriptors._CalcCrippenContribs(m) logps,mrs=zip(*contribs) x,y,z=Draw.calcAtomGaussians(m,0.03,step=0.01,weights=logps) fig.axes[0].imshow(z,cmap=cm.jet,interpolation='bilinear',origin='lower',extent=(0,1,0,1)) fig.axes[0].contour(x,y,z,20,colors='k',alpha=0.5) fig.savefig('coumlogps.colored.png',bbox_inches='tight') """ import numpy from matplotlib import mlab x = numpy.arange(0, 1, step) y = numpy.arange(0, 1, step) X, Y = numpy.meshgrid(x, y) if weights is None: weights = [1.] * mol.GetNumAtoms() Z = mlab.bivariate_normal(X, Y, a, a, mol._atomPs[0][0], mol._atomPs[0][1]) * weights[0] for i in range(1, mol.GetNumAtoms()): Zp = mlab.bivariate_normal(X, Y, a, a, mol._atomPs[i][0], mol._atomPs[i][1]) Z += Zp * weights[i] return X, Y, Z
Example #8
Source File: artist-demo.py From matplotlib-style-gallery with BSD 3-Clause "New" or "Revised" License | 5 votes |
def image_demo(fig, ax): delta = 0.025 x = y = np.arange(-3.0, 3.0, delta) xx, yy = np.meshgrid(x, y) z1 = mlab.bivariate_normal(xx, yy, 1.0, 1.0, 0.0, 0.0) z2 = mlab.bivariate_normal(xx, yy, 1.5, 0.5, 1, 1) image = z2-z1 # Difference of Gaussians img_plot = ax.imshow(image) ax.set_title('image') fig.tight_layout() # `colorbar` should be called after `tight_layout`. fig.colorbar(img_plot, ax=ax)
Example #9
Source File: gaussian_contours.py From QuantEcon.lectures.code with BSD 3-Clause "New" or "Revised" License | 5 votes |
def gen_gaussian_plot_vals(μ, C): "Z values for plotting the bivariate Gaussian N(μ, C)" m_x, m_y = float(μ[0]), float(μ[1]) s_x, s_y = np.sqrt(C[0, 0]), np.sqrt(C[1, 1]) s_xy = C[0, 1] return bivariate_normal(X, Y, s_x, s_y, m_x, m_y, s_xy)
Example #10
Source File: test_matplotlib.py From ConTroll_Remote_Access_Trojan with Apache License 2.0 | 5 votes |
def main(): # Part of the example at # http://matplotlib.sourceforge.net/plot_directive/mpl_examples/pylab_examples/contour_demo.py delta = 0.025 x = numpy.arange(-3.0, 3.0, delta) y = numpy.arange(-2.0, 2.0, delta) X, Y = numpy.meshgrid(x, y) Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0) Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1) Z = 10.0 * (Z2 - Z1) pyplot.figure() CS = pyplot.contour(X, Y, Z) pyplot.show()
Example #11
Source File: 3_em-for-gmm.py From Coursera-UW-Machine-Learning-Clustering-Retrieval with MIT License | 5 votes |
def plot_contours(data, means, covs, title): plt.figure() plt.plot([x[0] for x in data], [y[1] for y in data],'ko') # data delta = 0.025 k = len(means) x = np.arange(-2.0, 7.0, delta) y = np.arange(-2.0, 7.0, delta) X, Y = np.meshgrid(x, y) col = ['green', 'red', 'indigo'] for i in range(k): mean = means[i] cov = covs[i] sigmax = np.sqrt(cov[0][0]) sigmay = np.sqrt(cov[1][1]) sigmaxy = cov[0][1]/(sigmax*sigmay) Z = mlab.bivariate_normal(X, Y, sigmax, sigmay, mean[0], mean[1], sigmaxy) plt.contour(X, Y, Z, colors = col[i]) plt.title(title) plt.rcParams.update({'font.size':16}) plt.tight_layout() # In[26]: # Parameters after initialization