Python keras.layers.GaussianNoise() Examples
The following are 14
code examples of keras.layers.GaussianNoise().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.layers
, or try the search function
.
Example #1
Source File: example.py From CTCModel with MIT License | 8 votes |
def create_network(nb_features, nb_labels, padding_value): # Define the network architecture input_data = Input(name='input', shape=(None, nb_features)) # nb_features = image height masking = Masking(mask_value=padding_value)(input_data) noise = GaussianNoise(0.01)(masking) blstm = Bidirectional(LSTM(128, return_sequences=True, dropout=0.1))(noise) blstm = Bidirectional(LSTM(128, return_sequences=True, dropout=0.1))(blstm) blstm = Bidirectional(LSTM(128, return_sequences=True, dropout=0.1))(blstm) dense = TimeDistributed(Dense(nb_labels + 1, name="dense"))(blstm) outrnn = Activation('softmax', name='softmax')(dense) network = CTCModel([input_data], [outrnn]) network.compile(Adam(lr=0.0001)) return network
Example #2
Source File: gan.py From GAN-Sandbox with MIT License | 6 votes |
def discriminator_network(x): def add_common_layers(y): y = layers.advanced_activations.LeakyReLU()(y) y = layers.Dropout(0.25)(y) return y x = layers.GaussianNoise(stddev=0.2)(x) x = layers.Conv2D(64, kernel_size, **conv_layer_keyword_args)(x) x = add_common_layers(x) x = layers.Conv2D(128, kernel_size, **conv_layer_keyword_args)(x) x = add_common_layers(x) x = layers.Flatten()(x) x = layers.Dense(1024)(x) x = add_common_layers(x) return layers.Dense(1, activation='sigmoid')(x)
Example #3
Source File: models.py From asr-study with MIT License | 6 votes |
def graves2006(num_features=26, num_hiddens=100, num_classes=28, std=.6): """ Implementation of Graves' model Reference: [1] Graves, Alex, et al. "Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks." Proceedings of the 23rd international conference on Machine learning. ACM, 2006. """ x = Input(name='inputs', shape=(None, num_features)) o = x o = GaussianNoise(std)(o) o = Bidirectional(LSTM(num_hiddens, return_sequences=True, consume_less='gpu'))(o) o = TimeDistributed(Dense(num_classes))(o) return ctc_model(x, o)
Example #4
Source File: train.py From DeepAA with MIT License | 5 votes |
def CNN(input_shape=None, classes=1000): inputs = Input(shape=input_shape) # Block 1 x = GaussianNoise(0.3)(inputs) x = CBRD(x, 64) x = CBRD(x, 64) x = MaxPooling2D()(x) # Block 2 x = CBRD(x, 128) x = CBRD(x, 128) x = MaxPooling2D()(x) # Block 3 x = CBRD(x, 256) x = CBRD(x, 256) x = CBRD(x, 256) x = MaxPooling2D()(x) # Classification block x = Flatten(name='flatten')(x) x = DBRD(x, 4096) x = DBRD(x, 4096) x = Dense(classes, activation='softmax', name='predictions')(x) model = Model(inputs=inputs, outputs=x) return model
Example #5
Source File: model.py From KerasDeepSpeech with GNU Affero General Public License v3.0 | 5 votes |
def graves(input_dim=26, rnn_size=512, output_dim=29, std=0.6): """ Implementation of Graves 2006 model Architecture: Gaussian Noise on input BiDirectional LSTM Reference: ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf """ K.set_learning_phase(1) input_data = Input(name='the_input', shape=(None, input_dim)) # x = BatchNormalization(axis=-1)(input_data) x = GaussianNoise(std)(input_data) x = Bidirectional(LSTM(rnn_size, return_sequences=True, implementation=0))(x) y_pred = TimeDistributed(Dense(output_dim, activation='softmax'))(x) # Input of labels and other CTC requirements labels = Input(name='the_labels', shape=[None,], dtype='int32') input_length = Input(name='input_length', shape=[1], dtype='int32') label_length = Input(name='label_length', shape=[1], dtype='int32') # Keras doesn't currently support loss funcs with extra parameters # so CTC loss is implemented in a lambda layer loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length]) model = Model(inputs=[input_data, labels, input_length, label_length], outputs=[loss_out]) return model
Example #6
Source File: main.py From Sound_event_detection with MIT License | 5 votes |
def supervised_train(task_name,sed_model_name,augmentation): """" Training with only weakly-supervised learning Args: task_name: string the name of the task sed_model_name: string the name of the model augmentation: bool whether to add Gaussian noise Layer Return: """ LOG.info('config preparation for %s'%sed_model_name) #prepare for training train_sed=trainer.trainer(task_name,sed_model_name,False) #creat model using the model structure prepared in [train_sed] creat_model_sed=train_sed.model_struct.graph() LEN=train_sed.data_loader.LEN DIM=train_sed.data_loader.DIM inputs=Input((LEN,DIM)) #add Gaussian noise Layer if augmentation: inputs_t=GaussianNoise(0.15)(inputs) else: inputs_t=inputs outs=creat_model_sed(inputs_t,False) #the model used for training models=Model(inputs,outs) LOG.info('------------start training------------') train_sed.train(extra_model=models,train_mode='supervised') #predict results for validation set and test set train_sed.save_at_result() #audio tagging result train_sed.save_sed_result() #event detection result
Example #7
Source File: UNIT.py From GAN-MRI with GNU General Public License v3.0 | 5 votes |
def modelSharedEncoder(self, name): input = Input(shape=self.latent_dim) x = self.resblk(input, 256) z = GaussianNoise(stddev=1)(x, training=True) return Model(inputs=input, outputs=z, name=name)
Example #8
Source File: dann.py From ddan with MIT License | 5 votes |
def _build(self, input_layer, arch, activations, noise, droprate, l2reg): print 'Building network layers...' network = [input_layer] for nunits in arch: print nunits if isinstance(nunits, int): network += [Dense(nunits, activation='linear', kernel_regularizer=l1_l2(l1=0.01, l2=l2reg))(network[-1])] elif nunits == 'noise': network += [GaussianNoise(noise)(network[-1])] elif nunits == 'bn': network += [BatchNormalization()(network[-1])] elif nunits == 'drop': network += [Dropout(droprate)(network[-1])] elif nunits == 'act': if activations == 'prelu': network += [PReLU()(network[-1])] elif activations == 'leakyrelu': network += [LeakyReLU()(network[-1])] elif activations == 'elu': network += [ELU()(network[-1])] else: print 'Activation({})'.format(activations) network += [Activation(activations)(network[-1])] return network
Example #9
Source File: ddcn.py From ddan with MIT License | 5 votes |
def _build_model(self, nfeatures, architecture, supervised, confusion, confusion_incr, confusion_max, activations, noise, droprate, mmd_layer_idx, optimizer): self.inp_a = tf.placeholder(tf.float32, shape=(None, nfeatures)) self.inp_b = tf.placeholder(tf.float32, shape=(None, nfeatures)) self.labels_a = tf.placeholder(tf.float32, shape=(None, 1)) nlayers = len(architecture) layers_a = [self.inp_a] layers_b = [self.inp_b] for i, nunits in enumerate(architecture): print nunits, if i in mmd_layer_idx: print '(MMD)' else: print if isinstance(nunits, int): shared_layer = Dense(nunits, activation='linear') elif nunits == 'noise': shared_layer = GaussianNoise(noise) elif nunits == 'bn': shared_layer = BatchNormalization() elif nunits == 'drop': shared_layer = Dropout(droprate) elif nunits == 'act': if activations == 'prelu': shared_layer = PReLU() elif activations == 'elu': shared_layer = ELU() elif activations == 'leakyrelu': shared_layer = LeakyReLU() else: shared_layer = Activation(activations) layers_a += [shared_layer(layers_a[-1])] layers_b += [shared_layer(layers_b[-1])]
Example #10
Source File: layers_export.py From Fabrik with GNU General Public License v3.0 | 5 votes |
def gaussian_noise(layer, layer_in, layerId, tensor=True): stddev = layer['params']['stddev'] out = {layerId: GaussianNoise(stddev=stddev)} if tensor: out[layerId] = out[layerId](*layer_in) return out
Example #11
Source File: test_views.py From Fabrik with GNU General Public License v3.0 | 5 votes |
def test_keras_import(self): model = Sequential() model.add(GaussianNoise(stddev=0.1, input_shape=(16, 1))) model.build() self.keras_param_test(model, 0, 1)
Example #12
Source File: test_views.py From Fabrik with GNU General Public License v3.0 | 5 votes |
def test_keras_export(self): tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'keras_app', 'keras_export_test.json'), 'r') response = json.load(tests) tests.close() net = yaml.safe_load(json.dumps(response['net'])) net = {'l0': net['Input'], 'l1': net['GaussianNoise']} net['l0']['connection']['output'].append('l1') inp = data(net['l0'], '', 'l0')['l0'] net = gaussian_noise(net['l1'], [inp], 'l1') model = Model(inp, net['l1']) self.assertEqual(model.layers[1].__class__.__name__, 'GaussianNoise')
Example #13
Source File: main.py From Sound_event_detection with MIT License | 4 votes |
def semi_train(task_name,sed_model_name,at_model_name,augmentation): """" Training with semi-supervised learning (Guiding learning) Args: task_name: string the name of the task sed_model_name: string the name of the the PS-model at_model_name: string the name of the the PT-model augmentation: bool whether to add Gaussian noise to the input of the PT-model Return: """ #prepare for training of the PS-model LOG.info('config preparation for %s'%at_model_name) train_sed=trainer.trainer(task_name,sed_model_name,False) #prepare for training of the PT-model LOG.info('config preparation for %s'%sed_model_name) train_at=trainer.trainer(task_name,at_model_name,False) #connect the outputs of the two models to produce a model for end-to-end learning creat_model_at=train_at.model_struct.graph() creat_model_sed=train_sed.model_struct.graph() LEN=train_sed.data_loader.LEN DIM=train_sed.data_loader.DIM inputs=Input((LEN,DIM)) #add Gaussian noise if augmentation: at_inputs=GaussianNoise(0.15)(inputs) else: at_inputs=inputs at_out=creat_model_at(at_inputs,False) sed_out=creat_model_sed(inputs,False) out=concatenate([at_out,sed_out],axis=-1) models=Model(inputs,out) #start training (all intermediate files are saved in the PS-model dir) LOG.info('------------start training------------') train_sed.train(models) #copy the final model to the PT-model dir from the PS-model dir shutil.copyfile(train_sed.best_model_path,train_at.best_model_path) #predict results for validation set and test set (the PT-model) LOG.info('------------result of %s------------'%at_model_name) train_at.save_at_result() #audio tagging result #predict results for validation set and test set (the PS-model) LOG.info('------------result of %s------------'%sed_model_name) train_sed.save_at_result() #audio tagging result train_sed.save_sed_result() #event detection result
Example #14
Source File: deepcoral.py From ddan with MIT License | 4 votes |
def _build_model(self, nfeatures, architecture, supervised, confusion, confusion_incr, confusion_max, activations, noise, droprate, coral_layer_idx, optimizer): self.inp_a = tf.placeholder(tf.float32, shape=(None, nfeatures)) self.inp_b = tf.placeholder(tf.float32, shape=(None, nfeatures)) self.labels_a = tf.placeholder(tf.float32, shape=(None, 1)) self.lr = tf.placeholder(tf.float32, [], name='lr') nlayers = len(architecture) layers_a = [self.inp_a] layers_b = [self.inp_b] for i, nunits in enumerate(architecture): print nunits, if i in coral_layer_idx: print '(CORAL)' else: print if isinstance(nunits, int): shared_layer = Dense(nunits, activation='linear') elif nunits == 'noise': shared_layer = GaussianNoise(noise) elif nunits == 'bn': shared_layer = BatchNormalization() elif nunits == 'drop': shared_layer = Dropout(droprate) elif nunits == 'act': if activations == 'prelu': shared_layer = PReLU() elif activations == 'elu': shared_layer = ELU() elif activations == 'leakyrelu': shared_layer = LeakyReLU() else: shared_layer = Activation(activations) layers_a += [shared_layer(layers_a[-1])] layers_b += [shared_layer(layers_b[-1])]