Python keras.layers.Dense() Examples
The following are 30
code examples of keras.layers.Dense().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.layers
, or try the search function
.
Example #1
Source File: recurrent.py From keras-anomaly-detection with MIT License | 18 votes |
def create_model(time_window_size, metric): model = Sequential() model.add(Conv1D(filters=256, kernel_size=5, padding='same', activation='relu', input_shape=(time_window_size, 1))) model.add(MaxPooling1D(pool_size=4)) model.add(LSTM(64)) model.add(Dense(units=time_window_size, activation='linear')) model.compile(optimizer='adam', loss='mean_squared_error', metrics=[metric]) # model.compile(optimizer='adam', loss='mean_squared_error', metrics=[metric]) # model.compile(optimizer="sgd", loss="mse", metrics=[metric]) print(model.summary()) return model
Example #2
Source File: model.py From Image-Caption-Generator with MIT License | 11 votes |
def RNNModel(vocab_size, max_len, rnnConfig, model_type): embedding_size = rnnConfig['embedding_size'] if model_type == 'inceptionv3': # InceptionV3 outputs a 2048 dimensional vector for each image, which we'll feed to RNN Model image_input = Input(shape=(2048,)) elif model_type == 'vgg16': # VGG16 outputs a 4096 dimensional vector for each image, which we'll feed to RNN Model image_input = Input(shape=(4096,)) image_model_1 = Dropout(rnnConfig['dropout'])(image_input) image_model = Dense(embedding_size, activation='relu')(image_model_1) caption_input = Input(shape=(max_len,)) # mask_zero: We zero pad inputs to the same length, the zero mask ignores those inputs. E.g. it is an efficiency. caption_model_1 = Embedding(vocab_size, embedding_size, mask_zero=True)(caption_input) caption_model_2 = Dropout(rnnConfig['dropout'])(caption_model_1) caption_model = LSTM(rnnConfig['LSTM_units'])(caption_model_2) # Merging the models and creating a softmax classifier final_model_1 = concatenate([image_model, caption_model]) final_model_2 = Dense(rnnConfig['dense_units'], activation='relu')(final_model_1) final_model = Dense(vocab_size, activation='softmax')(final_model_2) model = Model(inputs=[image_input, caption_input], outputs=final_model) model.compile(loss='categorical_crossentropy', optimizer='adam') return model
Example #3
Source File: sgan.py From Keras-GAN with MIT License | 8 votes |
def build_generator(self): model = Sequential() model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim)) model.add(Reshape((7, 7, 128))) model.add(BatchNormalization(momentum=0.8)) model.add(UpSampling2D()) model.add(Conv2D(128, kernel_size=3, padding="same")) model.add(Activation("relu")) model.add(BatchNormalization(momentum=0.8)) model.add(UpSampling2D()) model.add(Conv2D(64, kernel_size=3, padding="same")) model.add(Activation("relu")) model.add(BatchNormalization(momentum=0.8)) model.add(Conv2D(1, kernel_size=3, padding="same")) model.add(Activation("tanh")) model.summary() noise = Input(shape=(self.latent_dim,)) img = model(noise) return Model(noise, img)
Example #4
Source File: context_encoder.py From Keras-GAN with MIT License | 7 votes |
def build_discriminator(self): model = Sequential() model.add(Conv2D(64, kernel_size=3, strides=2, input_shape=self.missing_shape, padding="same")) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Conv2D(128, kernel_size=3, strides=2, padding="same")) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Conv2D(256, kernel_size=3, padding="same")) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Flatten()) model.add(Dense(1, activation='sigmoid')) model.summary() img = Input(shape=self.missing_shape) validity = model(img) return Model(img, validity)
Example #5
Source File: cogan.py From Keras-GAN with MIT License | 7 votes |
def build_discriminators(self): img1 = Input(shape=self.img_shape) img2 = Input(shape=self.img_shape) # Shared discriminator layers model = Sequential() model.add(Flatten(input_shape=self.img_shape)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(Dense(256)) model.add(LeakyReLU(alpha=0.2)) img1_embedding = model(img1) img2_embedding = model(img2) # Discriminator 1 validity1 = Dense(1, activation='sigmoid')(img1_embedding) # Discriminator 2 validity2 = Dense(1, activation='sigmoid')(img2_embedding) return Model(img1, validity1), Model(img2, validity2)
Example #6
Source File: imagenet.py From vergeml with MIT License | 7 votes |
def _makenet(x, num_layers, dropout, random_seed): from keras.layers import Dense, Dropout dropout_seeder = random.Random(random_seed) for i in range(num_layers - 1): # add intermediate layers if dropout: x = Dropout(dropout, seed=dropout_seeder.randint(0, 10000))(x) x = Dense(1024, activation="relu", name='dense_layer_{}'.format(i))(x) if dropout: # add the final dropout layer x = Dropout(dropout, seed=dropout_seeder.randint(0, 10000))(x) return x
Example #7
Source File: weather_model.py From Deep_Learning_Weather_Forecasting with Apache License 2.0 | 7 votes |
def weather_l2(hidden_nums=100,l2=0.01): input_img = Input(shape=(37,)) hn = Dense(hidden_nums, activation='relu')(input_img) hn = Dense(hidden_nums, activation='relu', kernel_regularizer=regularizers.l2(l2))(hn) out_u = Dense(37, activation='sigmoid', name='ae_part')(hn) out_sig = Dense(37, activation='linear', name='pred_part')(hn) out_both = concatenate([out_u, out_sig], axis=1, name = 'concatenate') #weather_model = Model(input_img, outputs=[out_ae, out_pred]) mve_model = Model(input_img, outputs=[out_both]) mve_model.compile(optimizer='adam', loss=mve_loss, loss_weights=[1.]) return mve_model
Example #8
Source File: parallel_model.py From dataiku-contrib with Apache License 2.0 | 6 votes |
def build_model(x_train, num_classes): # Reset default graph. Keras leaves old ops in the graph, # which are ignored for execution but clutter graph # visualization in TensorBoard. tf.reset_default_graph() inputs = KL.Input(shape=x_train.shape[1:], name="input_image") x = KL.Conv2D(32, (3, 3), activation='relu', padding="same", name="conv1")(inputs) x = KL.Conv2D(64, (3, 3), activation='relu', padding="same", name="conv2")(x) x = KL.MaxPooling2D(pool_size=(2, 2), name="pool1")(x) x = KL.Flatten(name="flat1")(x) x = KL.Dense(128, activation='relu', name="dense1")(x) x = KL.Dense(num_classes, activation='softmax', name="dense2")(x) return KM.Model(inputs, x, "digit_classifier_model") # Load MNIST Data
Example #9
Source File: models.py From tartarus with MIT License | 6 votes |
def get_model_41(params): embedding_weights = pickle.load(open("../data/datasets/train_data/embedding_weights_w2v-google_MSD-AG.pk","rb")) # main sequential model model = Sequential() model.add(Embedding(len(embedding_weights[0]), params['embedding_dim'], input_length=params['sequence_length'], weights=embedding_weights)) #model.add(Dropout(params['dropout_prob'][0], input_shape=(params['sequence_length'], params['embedding_dim']))) model.add(LSTM(2048)) #model.add(Dropout(params['dropout_prob'][1])) model.add(Dense(output_dim=params["n_out"], init="uniform")) model.add(Activation(params['final_activation'])) logging.debug("Output CNN: %s" % str(model.output_shape)) if params['final_activation'] == 'linear': model.add(Lambda(lambda x :K.l2_normalize(x, axis=1))) return model # CRNN Arch for audio
Example #10
Source File: localizer.py From cnn-levelset with MIT License | 6 votes |
def __init__(self, model_path=None): if model_path is not None: self.model = self.load_model(model_path) else: # VGG16 last conv features inputs = Input(shape=(7, 7, 512)) x = Convolution2D(128, 1, 1)(inputs) x = Flatten()(x) # Cls head h_cls = Dense(256, activation='relu', W_regularizer=l2(l=0.01))(x) h_cls = Dropout(p=0.5)(h_cls) cls_head = Dense(20, activation='softmax', name='cls')(h_cls) # Reg head h_reg = Dense(256, activation='relu', W_regularizer=l2(l=0.01))(x) h_reg = Dropout(p=0.5)(h_reg) reg_head = Dense(4, activation='linear', name='reg')(h_reg) # Joint model self.model = Model(input=inputs, output=[cls_head, reg_head])
Example #11
Source File: weather_model.py From Deep_Learning_Weather_Forecasting with Apache License 2.0 | 6 votes |
def CausalCNN(n_filters, lr, decay, loss, seq_len, input_features, strides_len, kernel_size, dilation_rates): inputs = Input(shape=(seq_len, input_features), name='input_layer') x=inputs for dilation_rate in dilation_rates: x = Conv1D(filters=n_filters, kernel_size=kernel_size, padding='causal', dilation_rate=dilation_rate, activation='linear')(x) x = BatchNormalization()(x) x = Activation('relu')(x) #x = Dense(7, activation='relu', name='dense_layer')(x) outputs = Dense(3, activation='sigmoid', name='output_layer')(x) causalcnn = Model(inputs, outputs=[outputs]) return causalcnn
Example #12
Source File: reaction.py From armchair-expert with MIT License | 6 votes |
def __init__(self, path: str = None, use_gpu=False): import tensorflow as tf from keras.models import Sequential from keras.layers import Dense from keras.backend import set_session self.model = Sequential() self.model.add(Dense(AOLReactionFeatureAnalyzer.NUM_FEATURES, activation='relu', input_dim=AOLReactionFeatureAnalyzer.NUM_FEATURES)) self.model.add(Dense(AOLReactionFeatureAnalyzer.NUM_FEATURES - 2, activation='relu')) self.model.add(Dense(1, activation='sigmoid')) self.model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) if use_gpu: config = tf.ConfigProto() config.gpu_options.allow_growth = True set_session(tf.Session(config=config))
Example #13
Source File: bigan.py From Keras-GAN with MIT License | 6 votes |
def build_discriminator(self): z = Input(shape=(self.latent_dim, )) img = Input(shape=self.img_shape) d_in = concatenate([z, Flatten()(img)]) model = Dense(1024)(d_in) model = LeakyReLU(alpha=0.2)(model) model = Dropout(0.5)(model) model = Dense(1024)(model) model = LeakyReLU(alpha=0.2)(model) model = Dropout(0.5)(model) model = Dense(1024)(model) model = LeakyReLU(alpha=0.2)(model) model = Dropout(0.5)(model) validity = Dense(1, activation="sigmoid")(model) return Model([z, img], validity)
Example #14
Source File: structure.py From armchair-expert with MIT License | 6 votes |
def __init__(self, use_gpu: bool = False): import tensorflow as tf from keras.models import Sequential from keras.layers import Dense, Embedding from keras.layers import LSTM from keras.backend import set_session latent_dim = StructureModel.SEQUENCE_LENGTH * 8 model = Sequential() model.add( Embedding(StructureFeatureAnalyzer.NUM_FEATURES, StructureFeatureAnalyzer.NUM_FEATURES, input_length=StructureModel.SEQUENCE_LENGTH)) model.add(LSTM(latent_dim, dropout=0.2, return_sequences=False)) model.add(Dense(StructureFeatureAnalyzer.NUM_FEATURES, activation='softmax')) model.summary() model.compile(loss='sparse_categorical_crossentropy', optimizer='adam') self.model = model if use_gpu: config = tf.ConfigProto() config.gpu_options.allow_growth = True set_session(tf.Session(config=config))
Example #15
Source File: bigan.py From Keras-BiGAN with MIT License | 6 votes |
def encoder(self): if self.E: return self.E inp = Input(shape = [im_size, im_size, 3]) x = d_block(inp, 1 * cha) #64 x = d_block(x, 2 * cha) #32 x = d_block(x, 3 * cha) #16 x = d_block(x, 4 * cha) #8 x = d_block(x, 8 * cha) #4 x = d_block(x, 16 * cha, p = False) #4 x = Flatten()(x) x = Dense(16 * cha, kernel_initializer = 'he_normal')(x) x = LeakyReLU(0.2)(x) x = Dense(latent_size, kernel_initializer = 'he_normal', bias_initializer = 'zeros')(x) self.E = Model(inputs = inp, outputs = x) return self.E
Example #16
Source File: cnn_rnn_crf.py From Jtyoui with MIT License | 6 votes |
def create_model(): inputs = Input(shape=(length,), dtype='int32', name='inputs') embedding_1 = Embedding(len(vocab), EMBED_DIM, input_length=length, mask_zero=True)(inputs) bilstm = Bidirectional(LSTM(EMBED_DIM // 2, return_sequences=True))(embedding_1) bilstm_dropout = Dropout(DROPOUT_RATE)(bilstm) embedding_2 = Embedding(len(vocab), EMBED_DIM, input_length=length)(inputs) con = Conv1D(filters=FILTERS, kernel_size=2 * HALF_WIN_SIZE + 1, padding='same')(embedding_2) con_d = Dropout(DROPOUT_RATE)(con) dense_con = TimeDistributed(Dense(DENSE_DIM))(con_d) rnn_cnn = concatenate([bilstm_dropout, dense_con], axis=2) dense = TimeDistributed(Dense(len(chunk_tags)))(rnn_cnn) crf = CRF(len(chunk_tags), sparse_target=True) crf_output = crf(dense) model = Model(input=[inputs], output=[crf_output]) model.compile(loss=crf.loss_function, optimizer=Adam(), metrics=[crf.accuracy]) return model
Example #17
Source File: weather_model.py From Deep_Learning_Weather_Forecasting with Apache License 2.0 | 6 votes |
def weather_ae(layers, lr, decay, loss, input_len, input_features): inputs = Input(shape=(input_len, input_features), name='input_layer') for i, hidden_nums in enumerate(layers): if i==0: hn = Dense(hidden_nums, activation='relu')(inputs) else: hn = Dense(hidden_nums, activation='relu')(hn) outputs = Dense(3, activation='sigmoid', name='output_layer')(hn) weather_model = Model(inputs, outputs=[outputs]) return weather_model
Example #18
Source File: feedforward.py From keras-anomaly-detection with MIT License | 6 votes |
def create_model(self, input_dim): encoding_dim = 14 input_layer = Input(shape=(input_dim,)) encoder = Dense(encoding_dim, activation="tanh", activity_regularizer=regularizers.l1(10e-5))(input_layer) encoder = Dense(encoding_dim // 2, activation="relu")(encoder) decoder = Dense(encoding_dim // 2, activation='tanh')(encoder) decoder = Dense(input_dim, activation='relu')(decoder) model = Model(inputs=input_layer, outputs=decoder) model.compile(optimizer='adam', loss='mean_squared_error', metrics=['accuracy']) return model
Example #19
Source File: ccgan.py From Keras-GAN with MIT License | 6 votes |
def build_discriminator(self): img = Input(shape=self.img_shape) model = Sequential() model.add(Conv2D(64, kernel_size=4, strides=2, padding='same', input_shape=self.img_shape)) model.add(LeakyReLU(alpha=0.8)) model.add(Conv2D(128, kernel_size=4, strides=2, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(InstanceNormalization()) model.add(Conv2D(256, kernel_size=4, strides=2, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(InstanceNormalization()) model.summary() img = Input(shape=self.img_shape) features = model(img) validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(features) label = Flatten()(features) label = Dense(self.num_classes+1, activation="softmax")(label) return Model(img, [validity, label])
Example #20
Source File: bigan.py From Keras-GAN with MIT License | 6 votes |
def build_encoder(self): model = Sequential() model.add(Flatten(input_shape=self.img_shape)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(self.latent_dim)) model.summary() img = Input(shape=self.img_shape) z = model(img) return Model(img, z)
Example #21
Source File: gan.py From Keras-GAN with MIT License | 6 votes |
def build_generator(self): model = Sequential() model.add(Dense(256, input_dim=self.latent_dim)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(1024)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(np.prod(self.img_shape), activation='tanh')) model.add(Reshape(self.img_shape)) model.summary() noise = Input(shape=(self.latent_dim,)) img = model(noise) return Model(noise, img)
Example #22
Source File: pixelda.py From Keras-GAN with MIT License | 6 votes |
def build_classifier(self): def clf_layer(layer_input, filters, f_size=4, normalization=True): """Classifier layer""" d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input) d = LeakyReLU(alpha=0.2)(d) if normalization: d = InstanceNormalization()(d) return d img = Input(shape=self.img_shape) c1 = clf_layer(img, self.cf, normalization=False) c2 = clf_layer(c1, self.cf*2) c3 = clf_layer(c2, self.cf*4) c4 = clf_layer(c3, self.cf*8) c5 = clf_layer(c4, self.cf*8) class_pred = Dense(self.num_classes, activation='softmax')(Flatten()(c5)) return Model(img, class_pred)
Example #23
Source File: wgan.py From Keras-GAN with MIT License | 6 votes |
def build_generator(self): model = Sequential() model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim)) model.add(Reshape((7, 7, 128))) model.add(UpSampling2D()) model.add(Conv2D(128, kernel_size=4, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(Activation("relu")) model.add(UpSampling2D()) model.add(Conv2D(64, kernel_size=4, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(Activation("relu")) model.add(Conv2D(self.channels, kernel_size=4, padding="same")) model.add(Activation("tanh")) model.summary() noise = Input(shape=(self.latent_dim,)) img = model(noise) return Model(noise, img)
Example #24
Source File: wgan_gp.py From Keras-GAN with MIT License | 6 votes |
def build_generator(self): model = Sequential() model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim)) model.add(Reshape((7, 7, 128))) model.add(UpSampling2D()) model.add(Conv2D(128, kernel_size=4, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(Activation("relu")) model.add(UpSampling2D()) model.add(Conv2D(64, kernel_size=4, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(Activation("relu")) model.add(Conv2D(self.channels, kernel_size=4, padding="same")) model.add(Activation("tanh")) model.summary() noise = Input(shape=(self.latent_dim,)) img = model(noise) return Model(noise, img)
Example #25
Source File: bgan.py From Keras-GAN with MIT License | 6 votes |
def build_discriminator(self): model = Sequential() model.add(Flatten(input_shape=self.img_shape)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(Dense(256)) model.add(LeakyReLU(alpha=0.2)) model.add(Dense(1, activation='sigmoid')) model.summary() img = Input(shape=self.img_shape) validity = model(img) return Model(img, validity)
Example #26
Source File: lsgan.py From Keras-GAN with MIT License | 6 votes |
def build_discriminator(self): model = Sequential() model.add(Flatten(input_shape=self.img_shape)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(Dense(256)) model.add(LeakyReLU(alpha=0.2)) # (!!!) No softmax model.add(Dense(1)) model.summary() img = Input(shape=self.img_shape) validity = model(img) return Model(img, validity)
Example #27
Source File: bgan.py From Keras-GAN with MIT License | 6 votes |
def build_generator(self): model = Sequential() model.add(Dense(256, input_dim=self.latent_dim)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(1024)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(np.prod(self.img_shape), activation='tanh')) model.add(Reshape(self.img_shape)) model.summary() noise = Input(shape=(self.latent_dim,)) img = model(noise) return Model(noise, img)
Example #28
Source File: aae.py From Keras-GAN with MIT License | 6 votes |
def build_decoder(self): model = Sequential() model.add(Dense(512, input_dim=self.latent_dim)) model.add(LeakyReLU(alpha=0.2)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(Dense(np.prod(self.img_shape), activation='tanh')) model.add(Reshape(self.img_shape)) model.summary() z = Input(shape=(self.latent_dim,)) img = model(z) return Model(z, img)
Example #29
Source File: dcgan.py From Keras-GAN with MIT License | 6 votes |
def build_generator(self): model = Sequential() model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim)) model.add(Reshape((7, 7, 128))) model.add(UpSampling2D()) model.add(Conv2D(128, kernel_size=3, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(Activation("relu")) model.add(UpSampling2D()) model.add(Conv2D(64, kernel_size=3, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(Activation("relu")) model.add(Conv2D(self.channels, kernel_size=3, padding="same")) model.add(Activation("tanh")) model.summary() noise = Input(shape=(self.latent_dim,)) img = model(noise) return Model(noise, img)
Example #30
Source File: gan.py From Keras-GAN with MIT License | 6 votes |
def build_discriminator(self): model = Sequential() model.add(Flatten(input_shape=self.img_shape)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(Dense(256)) model.add(LeakyReLU(alpha=0.2)) model.add(Dense(1, activation='sigmoid')) model.summary() img = Input(shape=self.img_shape) validity = model(img) return Model(img, validity)