Python keras.layers.core.RepeatVector() Examples
The following are 15
code examples of keras.layers.core.RepeatVector().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.layers.core
, or try the search function
.
Example #1
Source File: model_zoo.py From visual_turing_test-tutorial with MIT License | 6 votes |
def create(self): self.textual_embedding(self, mask_zero=True) self.stacked_RNN(self) self.add(self._config.recurrent_encoder( self._config.hidden_state_dim, return_sequences=False, go_backwards=self._config.go_backwards)) self.add(Dropout(0.5)) self.add(RepeatVector(self._config.max_output_time_steps)) self.add(self._config.recurrent_decoder( self._config.hidden_state_dim, return_sequences=True)) self.add(Dropout(0.5)) self.add(TimeDistributedDense(self._config.output_dim)) self.add(Activation('softmax')) ### # Multimodal models ###
Example #2
Source File: model_zoo.py From visual_turing_test-tutorial with MIT License | 5 votes |
def create(self): language_model = Sequential() self.textual_embedding(language_model, mask_zero=True) self.language_model = language_model visual_model_factory = \ select_sequential_visual_model[self._config.trainable_perception_name]( self._config.visual_dim) visual_model = visual_model_factory.create() visual_dimensionality = visual_model_factory.get_dimensionality() self.visual_embedding(visual_model, visual_dimensionality) #visual_model = Sequential() #self.visual_embedding(visual_model) # the below should contain all zeros zero_model = Sequential() zero_model.add(RepeatVector(self._config.max_input_time_steps)-1) visual_model.add(Merge[visual_model, zero_model], mode='concat') self.visual_model = visual_model if self._config.multimodal_merge_mode == 'dot': self.add(Merge([language_model, visual_model], mode='dot', dot_axes=[(1,),(1,)])) else: self.add(Merge([language_model, visual_model], mode=self._config.multimodal_merge_mode)) self.add(self._config.recurrent_encoder( self._config.hidden_state_dim, return_sequences=False, go_backwards=self._config.go_backwards)) self.deep_mlp() self.add(Dense(self._config.output_dim)) self.add(Activation('softmax'))
Example #3
Source File: model_zoo.py From visual_turing_test-tutorial with MIT License | 5 votes |
def create(self): language_model = Sequential() self.textual_embedding(language_model, mask_zero=True) self.language_model = language_model visual_model_factory = \ select_sequential_visual_model[self._config.trainable_perception_name]( self._config.visual_dim) visual_model = visual_model_factory.create() visual_dimensionality = visual_model_factory.get_dimensionality() self.visual_embedding(visual_model, visual_dimensionality) #visual_model = Sequential() #self.visual_embedding(visual_model) self.visual_model = visual_model visual_model.add(RepeatVector(self._config.max_input_time_steps)) if self._config.multimodal_merge_mode == 'dot': self.add(Merge([language_model, visual_model], mode='dot', dot_axes=[(1,),(1,)])) else: self.add(Merge([language_model, visual_model], mode=self._config.multimodal_merge_mode)) self.add(self._config.recurrent_encoder( self._config.hidden_state_dim, return_sequences=False, go_backwards=self._config.go_backwards)) self.deep_mlp() self.add(Dense(self._config.output_dim)) self.add(Activation('softmax'))
Example #4
Source File: model_zoo.py From visual_turing_test-tutorial with MIT License | 5 votes |
def create(self): language_model = Sequential() self.textual_embedding(language_model, mask_zero=True) self.stacked_RNN(language_model) language_model.add(self._config.recurrent_encoder( self._config.hidden_state_dim, return_sequences=False, go_backwards=self._config.go_backwards)) self.language_model = language_model visual_model_factory = \ select_sequential_visual_model[self._config.trainable_perception_name]( self._config.visual_dim) visual_model = visual_model_factory.create() visual_dimensionality = visual_model_factory.get_dimensionality() self.visual_embedding(visual_model, visual_dimensionality) #visual_model = Sequential() #self.visual_embedding(visual_model) self.visual_model = visual_model if self._config.multimodal_merge_mode == 'dot': self.add(Merge([language_model, visual_model], mode='dot', dot_axes=[(1,),(1,)])) else: self.add(Merge([language_model, visual_model], mode=self._config.multimodal_merge_mode)) self.add(Dropout(0.5)) self.add(Dense(self._config.output_dim)) self.add(RepeatVector(self._config.max_output_time_steps)) self.add(self._config.recurrent_decoder( self._config.hidden_state_dim, return_sequences=True)) self.add(Dropout(0.5)) self.add(TimeDistributedDense(self._config.output_dim)) self.add(Activation('softmax')) ### # Graph-based models ###
Example #5
Source File: model.py From deepchem with MIT License | 5 votes |
def _buildDecoder(self, z, latent_rep_size, max_length, charset_length): h = Dense(latent_rep_size, name='latent_input', activation='relu')(z) h = RepeatVector(max_length, name='repeat_vector')(h) h = GRU(501, return_sequences=True, name='gru_1')(h) h = GRU(501, return_sequences=True, name='gru_2')(h) h = GRU(501, return_sequences=True, name='gru_3')(h) return TimeDistributed( Dense(charset_length, activation='softmax'), name='decoded_mean')(h)
Example #6
Source File: test_core.py From CAPTCHA-breaking with MIT License | 5 votes |
def test_repeat_vector(self): layer = core.RepeatVector(10) self._runner(layer)
Example #7
Source File: pig_latin.py From soph with MIT License | 5 votes |
def build_model(input_size, seq_len, hidden_size): """建立一个 sequence to sequence 模型""" model = Sequential() model.add(GRU(input_dim=input_size, output_dim=hidden_size, return_sequences=False)) model.add(Dense(hidden_size, activation="relu")) model.add(RepeatVector(seq_len)) model.add(GRU(hidden_size, return_sequences=True)) model.add(TimeDistributed(Dense(output_dim=input_size, activation="linear"))) model.compile(loss="mse", optimizer='adam') return model
Example #8
Source File: adder.py From soph with MIT License | 5 votes |
def build_model(input_size, seq_len, hidden_size): """建立一个 seq2seq 模型""" model = Sequential() model.add(GRU(input_dim=input_size, output_dim=hidden_size, return_sequences=False)) model.add(Dense(hidden_size, activation="relu")) model.add(RepeatVector(seq_len)) model.add(GRU(hidden_size, return_sequences=True)) model.add(TimeDistributed(Dense(output_dim=input_size, activation="softmax"))) model.compile(loss="categorical_crossentropy", optimizer='adam') return model
Example #9
Source File: lstm_cnn.py From stock-price-predict with MIT License | 5 votes |
def base_model(feature_len=1, after_day=1, input_shape=(20, 1)): model = Sequential() model.add(Conv1D(10, kernel_size=5, input_shape=input_shape, activation='relu', padding='valid', strides=1)) model.add(LSTM(100, return_sequences=False, input_shape=input_shape)) model.add(Dropout(0.25)) # one to many model.add(RepeatVector(after_day)) model.add(LSTM(200, return_sequences=True)) model.add(Dropout(0.25)) model.add(TimeDistributed(Dense(100, activation='relu', kernel_initializer='uniform'))) model.add(TimeDistributed(Dense(feature_len, activation='linear', kernel_initializer='uniform'))) return model
Example #10
Source File: lstm_mtm.py From stock-price-predict with MIT License | 5 votes |
def base_model(feature_len=1, after_day=1, input_shape=(20, 1)): model = Sequential() model.add(LSTM(units=100, return_sequences=False, input_shape=input_shape)) #model.add(LSTM(units=100, return_sequences=False, input_shape=input_shape)) # one to many model.add(RepeatVector(after_day)) model.add(LSTM(200, return_sequences=True)) #model.add(LSTM(50, return_sequences=True)) model.add(TimeDistributed(Dense(units=feature_len, activation='linear'))) return model
Example #11
Source File: CNN_LSTM.py From DeepLearning-OCR with Apache License 2.0 | 5 votes |
def build_CNN_LSTM(channels, width, height, lstm_output_size, nb_classes): model = Sequential() # 1 conv model.add(Convolution2D(64, 3, 3, border_mode='same', activation='relu', input_shape=(channels, height, width))) model.add(BatchNormalization(mode=0, axis=1)) # 2 conv model.add(Convolution2D(64, 3, 3, border_mode='same', activation='relu')) model.add(BatchNormalization(mode=0, axis=1)) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2,2))) # 3 conv model.add(Convolution2D(128, 3, 3, border_mode='same', activation='relu')) model.add(BatchNormalization(mode=0, axis=1)) # 4 conv model.add(Convolution2D(128, 3, 3, border_mode='same', activation='relu')) model.add(BatchNormalization(mode=0, axis=1)) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2,2))) # flaten a = model.add(Flatten()) # 1 dense model.add(Dense(512, activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.5)) # 2 dense model.add(Dense(512, activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.5)) # lstm model.add(RepeatVector(lstm_output_size)) model.add(LSTM(512, return_sequences=True)) model.add(TimeDistributed(Dropout(0.5))) model.add(TimeDistributed(Dense(nb_classes, activation='softmax'))) model.summary() model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=[categorical_accuracy_per_sequence], sample_weight_mode='temporal' ) return model
Example #12
Source File: model.py From keras-molecules with MIT License | 5 votes |
def _buildDecoder(self, z, latent_rep_size, max_length, charset_length): h = Dense(latent_rep_size, name='latent_input', activation = 'relu')(z) h = RepeatVector(max_length, name='repeat_vector')(h) h = GRU(501, return_sequences = True, name='gru_1')(h) h = GRU(501, return_sequences = True, name='gru_2')(h) h = GRU(501, return_sequences = True, name='gru_3')(h) return TimeDistributed(Dense(charset_length, activation='softmax'), name='decoded_mean')(h)
Example #13
Source File: model.py From neural_complete with MIT License | 5 votes |
def construct_model(maxlen, input_dimension, output_dimension, lstm_vector_output_dim): """ Склеены три слова """ input = Input(shape=(maxlen, input_dimension), name='input') # lstm_encode = LSTM(lstm_vector_output_dim)(input) lstm_encode = SimpleRNN(lstm_vector_output_dim, activation='sigmoid')(input) encoded_copied = RepeatVector(n=maxlen)(lstm_encode) # lstm_decode = LSTM(output_dim=output_dimension, return_sequences=True, activation='softmax')(encoded_copied) lstm_decode = SimpleRNN(output_dim=output_dimension, return_sequences=True, activation='softmax')(encoded_copied) decoded = TimeDistributed(Dense(output_dimension, activation='softmax'))(lstm_decode) encoder_decoder = Model(input, decoded) adam = Adam() encoder_decoder.compile(loss='categorical_crossentropy', optimizer=adam) return encoder_decoder
Example #14
Source File: model_all_stacked.py From neural_complete with MIT License | 5 votes |
def construct_model(maxlen, input_dimension, output_dimension, lstm_vector_output_dim): """ Склеены три слова """ input = Input(shape=(maxlen, input_dimension), name='input') # lstm_encode = LSTM(lstm_vector_output_dim)(input) lstm_encode = SimpleRNN(lstm_vector_output_dim, activation='relu')(input) encoded_copied = RepeatVector(n=maxlen)(lstm_encode) # lstm_decode = LSTM(output_dim=output_dimension, return_sequences=True, activation='softmax')(encoded_copied) lstm_decode = SimpleRNN(output_dim=output_dimension, return_sequences=True, activation='softmax')(encoded_copied) encoder = Model(input, lstm_decode) adam = Adam() encoder.compile(loss='categorical_crossentropy', optimizer=adam) return encoder
Example #15
Source File: model.py From keras_npi with MIT License | 4 votes |
def build(self): enc_size = self.size_of_env_observation() argument_size = IntegerArguments.size_of_arguments input_enc = InputLayer(batch_input_shape=(self.batch_size, enc_size), name='input_enc') input_arg = InputLayer(batch_input_shape=(self.batch_size, argument_size), name='input_arg') input_prg = Embedding(input_dim=PROGRAM_VEC_SIZE, output_dim=PROGRAM_KEY_VEC_SIZE, input_length=1, batch_input_shape=(self.batch_size, 1)) f_enc = Sequential(name='f_enc') f_enc.add(Merge([input_enc, input_arg], mode='concat')) f_enc.add(MaxoutDense(128, nb_feature=4)) self.f_enc = f_enc program_embedding = Sequential(name='program_embedding') program_embedding.add(input_prg) f_enc_convert = Sequential(name='f_enc_convert') f_enc_convert.add(f_enc) f_enc_convert.add(RepeatVector(1)) f_lstm = Sequential(name='f_lstm') f_lstm.add(Merge([f_enc_convert, program_embedding], mode='concat')) f_lstm.add(LSTM(256, return_sequences=False, stateful=True, W_regularizer=l2(0.0000001))) f_lstm.add(Activation('relu', name='relu_lstm_1')) f_lstm.add(RepeatVector(1)) f_lstm.add(LSTM(256, return_sequences=False, stateful=True, W_regularizer=l2(0.0000001))) f_lstm.add(Activation('relu', name='relu_lstm_2')) # plot(f_lstm, to_file='f_lstm.png', show_shapes=True) f_end = Sequential(name='f_end') f_end.add(f_lstm) f_end.add(Dense(1, W_regularizer=l2(0.001))) f_end.add(Activation('sigmoid', name='sigmoid_end')) f_prog = Sequential(name='f_prog') f_prog.add(f_lstm) f_prog.add(Dense(PROGRAM_KEY_VEC_SIZE, activation="relu")) f_prog.add(Dense(PROGRAM_VEC_SIZE, W_regularizer=l2(0.0001))) f_prog.add(Activation('softmax', name='softmax_prog')) # plot(f_prog, to_file='f_prog.png', show_shapes=True) f_args = [] for ai in range(1, IntegerArguments.max_arg_num+1): f_arg = Sequential(name='f_arg%s' % ai) f_arg.add(f_lstm) f_arg.add(Dense(IntegerArguments.depth, W_regularizer=l2(0.0001))) f_arg.add(Activation('softmax', name='softmax_arg%s' % ai)) f_args.append(f_arg) # plot(f_arg, to_file='f_arg.png', show_shapes=True) self.model = Model([input_enc.input, input_arg.input, input_prg.input], [f_end.output, f_prog.output] + [fa.output for fa in f_args], name="npi") self.compile_model() plot(self.model, to_file='model.png', show_shapes=True)