Python dataset.DataSet() Examples
The following are 12
code examples of dataset.DataSet().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
dataset
, or try the search function
.
Example #1
Source File: datagenerator.py From plant-disease-classification with MIT License | 6 votes |
def read_train_sets(train_path, image_size, classes, validation_size): data_set = DataSet() images, labels, img_names, class_array = load_train_data(train_path, image_size, classes) images, labels, img_names, class_array = shuffle(images, labels, img_names, class_array) if isinstance(validation_size, float): validation_size = int(validation_size * images.shape[0]) validation_images = images[:validation_size] validation_labels = labels[:validation_size] validation_img_names = img_names[:validation_size] validation_cls = class_array[:validation_size] train_images = images[validation_size:] train_labels = labels[validation_size:] train_img_names = img_names[validation_size:] train_cls = class_array[validation_size:] data_set.train = DataSet(train_images, train_labels, train_img_names, train_cls) data_set.valid = DataSet(validation_images, validation_labels, validation_img_names, validation_cls) return data_set
Example #2
Source File: compare_variational_mcmc.py From deep_gp_random_features with Apache License 2.0 | 6 votes |
def generate_toy_data(): N = 50 DATA_X = np.random.uniform(-5.0, 5.0, [N, 1]) true_log_lambda = -2.0 true_std = np.exp(true_log_lambda) / 2.0 # 0.1 DATA_y = f(DATA_X) + np.random.normal(0.0, true_std, [N, 1]) Xtest = np.asarray(np.arange(-10.0, 10.0, 0.1)) Xtest = Xtest[:, np.newaxis] ytest = f(Xtest) # + np.random.normal(0, true_std, [Xtest.shape[0], 1]) data = DataSet(DATA_X, DATA_y) test = DataSet(Xtest, ytest, shuffle=False) return data, test
Example #3
Source File: mnist.py From meta-optim-public with MIT License | 6 votes |
def read_data_sets(train_dir, seed=0): one_hot = False class DataSets(object): pass data_sets = DataSets() TRAIN_IMAGES = "train-images-idx3-ubyte.gz" TRAIN_LABELS = "train-labels-idx1-ubyte.gz" TEST_IMAGES = "t10k-images-idx3-ubyte.gz" TEST_LABELS = "t10k-labels-idx1-ubyte.gz" local_file = maybe_download(TRAIN_IMAGES, train_dir) train_images = extract_images(local_file) local_file = maybe_download(TRAIN_LABELS, train_dir) train_labels = extract_labels(local_file, one_hot=one_hot) local_file = maybe_download(TEST_IMAGES, train_dir) test_images = extract_images(local_file) local_file = maybe_download(TEST_LABELS, train_dir) test_labels = extract_labels(local_file, one_hot=one_hot) print('Train', train_images.shape) print('Test', test_images.shape) data_sets.train = DataSet(train_images, train_labels, seed=seed) data_sets.test = DataSet(test_images, test_labels, seed=seed) return data_sets
Example #4
Source File: cifar.py From MachineLearning with Apache License 2.0 | 5 votes |
def __init__(self): self.train = dataset.DataSet() self.test = dataset.DataSet()
Example #5
Source File: svhn.py From MachineLearning with Apache License 2.0 | 5 votes |
def __init__(self): self.train = dataset.DataSet() self.test = dataset.DataSet()
Example #6
Source File: dgp_rff_infmnist.py From deep_gp_random_features with Apache License 2.0 | 5 votes |
def import_mnist(): """ This import mnist and saves the data as an object of our DataSet class :return: """ VALIDATION_SIZE = 0 ONE_HOT = True TRAIN_DIR = 'INFMNIST_data/' train_images = extract_images_2(open(TRAIN_DIR + 'mnist8m-patterns-idx3-ubyte.gz')) train_labels = extract_labels(open(TRAIN_DIR + 'mnist8m-labels-idx1-ubyte.gz'), one_hot=ONE_HOT) test_images = extract_images(open(TRAIN_DIR + 'test10k-patterns.gz')) test_labels = extract_labels(open(TRAIN_DIR + 'test10k-labels.gz'), one_hot=ONE_HOT) validation_images = train_images[:VALIDATION_SIZE] validation_labels = train_labels[:VALIDATION_SIZE] train_images = train_images[VALIDATION_SIZE:] train_labels = train_labels[VALIDATION_SIZE:] ## Process images train_images = process_mnist(train_images) validation_images = process_mnist(validation_images) test_images = process_mnist(test_images) ## Standardize data train_mean, train_std = get_data_info(train_images) # train_images = standardize_data(train_images, train_mean, train_std) # validation_images = standardize_data(validation_images, train_mean, train_std) # test_images = standardize_data(test_images, train_mean, train_std) data = DataSet(train_images, train_labels) test = DataSet(test_images, test_labels) val = DataSet(validation_images, validation_labels) return data, test, val
Example #7
Source File: dgp_rff_classification.py From deep_gp_random_features with Apache License 2.0 | 5 votes |
def import_dataset(dataset, fold): train_X = np.loadtxt('FOLDS/' + dataset + '_ARD_Xtrain__FOLD_' + fold, delimiter=' ') train_Y = np.loadtxt('FOLDS/' + dataset + '_ARD_ytrain__FOLD_' + fold, delimiter=' ') test_X = np.loadtxt('FOLDS/' + dataset + '_ARD_Xtest__FOLD_' + fold, delimiter=' ') test_Y = np.loadtxt('FOLDS/' + dataset + '_ARD_ytest__FOLD_' + fold, delimiter=' ') data = DataSet(train_X, train_Y) test = DataSet(test_X, test_Y) return data, test
Example #8
Source File: dgp_rff_regression.py From deep_gp_random_features with Apache License 2.0 | 5 votes |
def import_dataset(dataset, fold): train_X = np.loadtxt('FOLDS/' + dataset + '_ARD_Xtrain__FOLD_' + fold, delimiter=' ') train_Y = np.loadtxt('FOLDS/' + dataset + '_ARD_ytrain__FOLD_' + fold, delimiter=' ') train_Y = np.reshape(train_Y, (-1, 1)) test_X = np.loadtxt('FOLDS/' + dataset + '_ARD_Xtest__FOLD_' + fold, delimiter=' ') test_Y = np.loadtxt('FOLDS/' + dataset + '_ARD_ytest__FOLD_' + fold, delimiter=' ') test_Y = np.reshape(test_Y, (-1, 1)) data = DataSet(train_X, train_Y) test = DataSet(test_X, test_Y) return data, test
Example #9
Source File: training.py From reweighted-ws with GNU Affero General Public License v3.0 | 5 votes |
def load_data(self): dataset = self.dataset assert isinstance(dataset, DataSet) n_datapoints = dataset.n_datapoints assert n_datapoints == dataset.X.shape[0] X, Y = dataset.preproc(dataset.X, dataset.Y) self.train_X = theano.shared(X, "train_X") self.train_Y = theano.shared(Y, "train_Y") self.train_perm = theano.shared(np.random.permutation(n_datapoints))
Example #10
Source File: dgp_rff_mnist.py From deep_gp_random_features with Apache License 2.0 | 4 votes |
def import_mnist(): """ This import mnist and saves the data as an object of our DataSet class :return: """ SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/' TRAIN_IMAGES = 'train-images-idx3-ubyte.gz' TRAIN_LABELS = 'train-labels-idx1-ubyte.gz' TEST_IMAGES = 't10k-images-idx3-ubyte.gz' TEST_LABELS = 't10k-labels-idx1-ubyte.gz' VALIDATION_SIZE = 0 ONE_HOT = True TRAIN_DIR = 'MNIST_data' local_file = base.maybe_download(TRAIN_IMAGES, TRAIN_DIR, SOURCE_URL + TRAIN_IMAGES) train_images = extract_images(open(local_file, 'rb')) local_file = base.maybe_download(TRAIN_LABELS, TRAIN_DIR, SOURCE_URL + TRAIN_LABELS) train_labels = extract_labels(open(local_file, 'rb'), one_hot=ONE_HOT) local_file = base.maybe_download(TEST_IMAGES, TRAIN_DIR, SOURCE_URL + TEST_IMAGES) test_images = extract_images(open(local_file, 'rb')) local_file = base.maybe_download(TEST_LABELS, TRAIN_DIR, SOURCE_URL + TEST_LABELS) test_labels = extract_labels(open(local_file, 'rb'), one_hot=ONE_HOT) validation_images = train_images[:VALIDATION_SIZE] validation_labels = train_labels[:VALIDATION_SIZE] train_images = train_images[VALIDATION_SIZE:] train_labels = train_labels[VALIDATION_SIZE:] ## Process images train_images = process_mnist(train_images) validation_images = process_mnist(validation_images) test_images = process_mnist(test_images) ## Standardize data train_mean, train_std = get_data_info(train_images) # train_images = standardize_data(train_images, train_mean, train_std) # validation_images = standardize_data(validation_images, train_mean, train_std) # test_images = standardize_data(test_images, train_mean, train_std) data = DataSet(train_images, train_labels) test = DataSet(test_images, test_labels) val = DataSet(validation_images, validation_labels) return data, test, val
Example #11
Source File: cifar10.py From meta-optim-public with MIT License | 4 votes |
def read_data_sets(data_folder, seed=0): train_img = [] train_label = [] test_img = [] test_label = [] filename = 'cifar-10-python.tar.gz' maybe_download(filename, data_folder) train_file_list = [ "data_batch_1", "data_batch_2", "data_batch_3", "data_batch_4", "data_batch_5" ] test_file_list = ["test_batch"] for i in six.moves.xrange(len(train_file_list)): tmp_dict = np.load( os.path.join(data_folder, 'cifar-10-batches-py', train_file_list[i]), encoding='latin1') train_img.append(tmp_dict["data"]) train_label.append(tmp_dict["labels"]) tmp_dict = np.load( os.path.join(data_folder, 'cifar-10-batches-py', test_file_list[0]), encoding='latin1') test_img.append(tmp_dict["data"]) test_label.append(tmp_dict["labels"]) train_img = np.concatenate(train_img) train_label = np.concatenate(train_label) test_img = np.concatenate(test_img) test_label = np.concatenate(test_label) train_img = np.reshape(train_img, [-1, 3, 32, 32]) test_img = np.reshape(test_img, [-1, 3, 32, 32]) # change format from [B, C, H, W] to [B, H, W, C] for feeding to Tensorflow train_img = np.transpose(train_img, [0, 2, 3, 1]) test_img = np.transpose(test_img, [0, 2, 3, 1]) class DataSets(object): pass data_sets = DataSets() data_sets.train = DataSet(train_img, train_label, seed=seed) data_sets.test = DataSet(test_img, test_label, seed=seed) return data_sets
Example #12
Source File: model.py From VietnameseOCR with Apache License 2.0 | 4 votes |
def train(self, learning_rate, training_epochs, batch_size, keep_prob): self.dataset = DataSet() self.Y = tf.placeholder(tf.float32, [None, NO_LABEL], name='Y') self.cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.logits, labels=self.Y)) self.optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(self.cost) if self.log: tf.summary.scalar('cost', self.cost) self.merged = tf.summary.merge_all() self.train_writer = tf.summary.FileWriter('./log_train', self.sess.graph) self.sess.run(tf.global_variables_initializer()) self.sess.run(tf.local_variables_initializer()) print('Training...') weights = [] for epoch in range(training_epochs): avg_cost = 0 total_batch = int(len(self.dataset.train_idx) / batch_size) # print('total_batch', total_batch) for i in range(total_batch + 1): batch_xs, batch_ys = self.dataset.next_batch(batch_size) feed_dict = { self.X: batch_xs.reshape([batch_xs.shape[0], 28, 28, 1]), self.Y: batch_ys, self.keep_prob: keep_prob } weights, summary, c, _ = self.sess.run([self.parameters, self.merged, self.cost, self.optimizer], feed_dict=feed_dict) avg_cost += c / total_batch if self.log: self.train_writer.add_summary(summary, epoch + 1) print('Epoch:', '%02d' % (epoch + 1), 'cost =', '{:.9f}'.format(avg_cost)) print('Training finished!') saver = tf.train.Saver() save_path = saver.save(self.sess, "viet_ocr_brain.ckpt") print("Trainned model is saved in file: %s" % save_path)