Python PIL.Image.composite() Examples
The following are 30
code examples of PIL.Image.composite().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
PIL.Image
, or try the search function
.
Example #1
Source File: utils.py From Dense-CoAttention-Network with MIT License | 6 votes |
def mask_img(img, attn, upscale=32): """ Put attention weights to each region in image. -------------------- Arguments: img (ndarray: H x W x C): image data. attn (ndarray: 14 x 14): attention weights of each region. upscale (int): the ratio between attention size and image size. """ attn = transform.pyramid_expand(attn, upscale=upscale, sigma=20) attn = misc.toimage(attn).convert("L") mask = misc.toimage(np.zeros(img.shape, dtype=np.uint8)).convert("RGBA") img = misc.toimage(img).convert("RGBA") img = Image.composite(img, mask, attn) return img
Example #2
Source File: image_rotation_data.py From optillusion-animation with MIT License | 6 votes |
def get_rotated_image_labels(client, image, bg, phi): # https://stackoverflow.com/a/5253554 rot = image.rotate(-phi) # clockwise image_tf = Image.composite(rot, bg, rot) filename = str(phi) + '.png' image_tf.convert('RGB').save(os.path.join(output_path, filename)) # https://stackoverflow.com/a/33117447 imgByteArr = io.BytesIO() image_tf.save(imgByteArr, format='PNG') imgByteArr = imgByteArr.getvalue() image = types.Image(content=imgByteArr) response = client.label_detection(image=image) return response
Example #3
Source File: lomolive.py From wx-fancy-pic with MIT License | 6 votes |
def lomoize (image,darkness,saturation): (width,height) = image.size max = width if height > width: max = height mask = Image.open("./lomolive/lomomask.jpg").resize((max,max)) left = round((max - width) / 2) upper = round((max - height) / 2) mask = mask.crop((left,upper,left+width,upper + height)) # mask = Image.open('mask_l.png') darker = ImageEnhance.Brightness(image).enhance(darkness) saturated = ImageEnhance.Color(image).enhance(saturation) lomoized = Image.composite(saturated,darker,mask) return lomoized
Example #4
Source File: visualization_utils.py From object_detection_with_tensorflow with MIT License | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.7): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.7) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #5
Source File: preprocess.py From instance-segmentation-pytorch with GNU General Public License v3.0 | 5 votes |
def rotate_with_random_bg(img, angle, resample=Image.BILINEAR, expand=True): is_numpy = isinstance(img, np.ndarray) if not _is_pil_image(img): if is_numpy: img = Image.fromarray(img) else: raise TypeError( 'img should be PIL Image or numpy array. \ Got {}'.format(type(img))) img_np = np.array(img) img = img.convert('RGBA') img = rotate(img, angle, resample=resample, expand=expand) key = np.random.choice([0, 1, 2, 3]) if key == 0: bg = Image.new('RGBA', img.size, (255, ) * 4) # White image elif key == 1: bg = Image.new('RGBA', img.size, (0, 0, 0, 255)) # Black image elif key == 2: mean_color = map(int, img_np.mean((0, 1))) bg = Image.new('RGBA', img.size, (mean_color[0], mean_color[1], mean_color[2], 255)) # Mean elif key == 3: median_color = map(int, np.median(img_np, (0, 1))) bg = Image.new('RGBA', img.size, (median_color[0], median_color[1], median_color[2], 255)) # Median img = Image.composite(img, bg, img) img = img.convert('RGB') if is_numpy: img = np.array(img) return img
Example #6
Source File: visualization_utils.py From aster with MIT License | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.7): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a float numpy array of shape (img_height, img_height) with values between 0 and 1 color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.7) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.float32: raise ValueError('`mask` not of type np.float32') if np.any(np.logical_or(mask > 1.0, mask < 0.0)): raise ValueError('`mask` elements should be in [0, 1]') rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #7
Source File: visualization_utils.py From MBMD with MIT License | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.7): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a float numpy array of shape (img_height, img_height) with values between 0 and 1 color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.7) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.float32: raise ValueError('`mask` not of type np.float32') if np.any(np.logical_or(mask > 1.0, mask < 0.0)): raise ValueError('`mask` elements should be in [0, 1]') rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #8
Source File: visualization_utils.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.4) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') if image.shape[:2] != mask.shape: raise ValueError('The image has spatial dimensions %s but the mask has ' 'dimensions %s' % (image.shape[:2], mask.shape)) rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #9
Source File: visualization_utils.py From AniSeg with Apache License 2.0 | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.4) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') if image.shape[:2] != mask.shape: raise ValueError('The image has spatial dimensions %s but the mask has ' 'dimensions %s' % (image.shape[:2], mask.shape)) rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #10
Source File: captcha.py From ojbk_jiexi with GNU Affero General Public License v3.0 | 5 votes |
def rotate(self): img1 = self.image.rotate(random.randint(-1, 1), expand=0) # 默认为0,表示剪裁掉伸到画板外面的部分 img = Image.new('RGBA', img1.size, (255,) * 4) self.image = Image.composite(img1, img, img1)
Example #11
Source File: pildriver.py From ImageFusion with MIT License | 5 votes |
def do_composite(self): """usage: composite <image:pic1> <image:pic2> <image:mask> Replace two images and a mask with their composite. """ image1 = self.do_pop() image2 = self.do_pop() mask = self.do_pop() self.push(Image.composite(image1, image2, mask))
Example #12
Source File: visualization_utils.py From object_detection_with_tensorflow with MIT License | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.7): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.7) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #13
Source File: visualization_utils.py From Elphas with Apache License 2.0 | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.4) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') if image.shape[:2] != mask.shape: raise ValueError('The image has spatial dimensions %s but the mask has ' 'dimensions %s' % (image.shape[:2], mask.shape)) rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #14
Source File: Visualization.py From VehicleDetectionAndTracking with GNU General Public License v3.0 | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.7): """ :param image: uint8 numpy array with shape (img_height, img_height, 3) :param mask: uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1 :param color: Color to draw the keypoints with :param alpha: Transparency value between 0 and 1 """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims(np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0 * alpha * mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB'))) # Method: Used to overlay labeled boxes on an image with formatted scores and label names
Example #15
Source File: visualization.py From rpi-deep-pantilt with MIT License | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.4) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') if image.shape[:2] != mask.shape: raise ValueError('The image has spatial dimensions %s but the mask has ' 'dimensions %s' % (image.shape[:2], mask.shape)) rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #16
Source File: bitmap_factory.py From fluxclient with GNU Affero General Public License v3.0 | 5 votes |
def _rotate_img(self, img, degree): temp_img = img.convert("RGBA").rotate(degree, expand=True) empty_img = Image.new('RGBA', temp_img.size, "white") out_img = Image.composite(temp_img, empty_img, temp_img) return out_img
Example #17
Source File: svgeditor_factory.py From fluxclient with GNU Affero General Public License v3.0 | 5 votes |
def _rotate_img(self, img, degree): temp_img = img.convert("RGBA").rotate(degree, expand=True) empty_img = Image.new('RGBA', temp_img.size, "white") out_img = Image.composite(temp_img, empty_img, temp_img) return out_img
Example #18
Source File: visualization_utils.py From hands-detection with MIT License | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.7): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a float numpy array of shape (img_height, img_height) with values between 0 and 1 color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.7) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.float32: raise ValueError('`mask` not of type np.float32') if np.any(np.logical_or(mask > 1.0, mask < 0.0)): raise ValueError('`mask` elements should be in [0, 1]') rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #19
Source File: visualization_utils.py From TwinGAN with Apache License 2.0 | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.4) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') if image.shape[:2] != mask.shape: raise ValueError('The image has spatial dimensions %s but the mask has ' 'dimensions %s' % (image.shape[:2], mask.shape)) rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #20
Source File: visualization_utils.py From moveo_ros with MIT License | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.7): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a float numpy array of shape (img_height, img_height) with values between 0 and 1 color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.7) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.float32: raise ValueError('`mask` not of type np.float32') if np.any(np.logical_or(mask > 1.0, mask < 0.0)): raise ValueError('`mask` elements should be in [0, 1]') rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #21
Source File: pildriver.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def do_composite(self): """usage: composite <image:pic1> <image:pic2> <image:mask> Replace two images and a mask with their composite. """ image1 = self.do_pop() image2 = self.do_pop() mask = self.do_pop() self.push(Image.composite(image1, image2, mask))
Example #22
Source File: visualization_utils.py From tf2-eager-yolo3 with MIT License | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.4) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') if image.shape[:2] != mask.shape: raise ValueError('The image has spatial dimensions %s but the mask has ' 'dimensions %s' % (image.shape[:2], mask.shape)) rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #23
Source File: generator.py From DeepLearning-OCR with Apache License 2.0 | 5 votes |
def captcha_draw(label, fonts, dir_path, pic_id): # width, height = 512, 48 # size_cha = random.randint(24, 48) # 字符大小 # derx = random.randint(0, 16) # im = Image.new(mode='L', size=(width, height), color='white') # color 背景颜色,size 图片大小 # drawer = ImageDraw.Draw(im) # font = ImageFont.truetype(random.choice(fonts), size_cha) # drawer.text(xy=(derx, 0), text=label, font=font, fill='black') #text 内容,font 字体(包括大小) # # im.show() # write2file(dir_path, label, im) width, height = 32, 32 size_cha = random.randint(16, 28) # 字符大小 derx = random.randint(0, max(width-size_cha-10, 0)) dery = random.randint(0, max(height-size_cha-10, 0)) im = Image.new(mode='L', size=(width, height), color='white') # color 背景颜色,size 图片大小 drawer = ImageDraw.Draw(im) font = ImageFont.truetype(random.choice(fonts), size_cha) drawer.text(xy=(derx, dery), text=label, font=font, fill='black') #text 内容,font 字体(包括大小) # if label != ' ' and (img_as_float(im) == np.ones((48, 48))).all(): # # in case the label is not in this font, then the image will be all white # return 0 im = im.convert('RGBA') max_angle = 45 # to be tuned angle = random.randint(-max_angle, max_angle) im = im.rotate(angle, Image.BILINEAR, expand=0) fff = Image.new('RGBA', im.size, (255,)*4) im = Image.composite(im, fff, im) # if random.random() < 0.5: # im = Image.fromarray(grey_erosion(im, size=(2, 2))) # erosion # if random.random() < 0.5: # im = Image.fromarray((random_noise(img_as_float(im), mode='s&p')*255).astype(np.uint8)) # im = im.filter(ImageFilter.GaussianBlur(radius=random.random())) # im.show() write2file(dir_path, label, im, pic_id) return 1
Example #24
Source File: visualization_utils_color.py From tensorflow-face-detection with Apache License 2.0 | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.7): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a float numpy array of shape (img_height, img_height) with values between 0 and 1 color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.7) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.float32: raise ValueError('`mask` not of type np.float32') if np.any(np.logical_or(mask > 1.0, mask < 0.0)): raise ValueError('`mask` elements should be in [0, 1]') rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #25
Source File: visualize.py From YOLOV3 with MIT License | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.4) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') if image.shape[:2] != mask.shape: raise ValueError('The image has spatial dimensions %s but the mask has ' 'dimensions %s' % (image.shape[:2], mask.shape)) rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0 * alpha * mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #26
Source File: visualization_utils.py From container_detection with GNU General Public License v3.0 | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.4) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') if image.shape[:2] != mask.shape: raise ValueError('The image has spatial dimensions %s but the mask has ' 'dimensions %s' % (image.shape[:2], mask.shape)) rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #27
Source File: __init__.py From margipose with Apache License 2.0 | 5 votes |
def augment_background(img, mask, bg): return Image.composite(img, bg, mask)
Example #28
Source File: __init__.py From margipose with Apache License 2.0 | 5 votes |
def augment_clothing(img, mask, texture): a = np.array(img) grey = a.mean(axis=-1) blackness = (255 - grey).clip(min=0) / 255 texture = np.array(texture, dtype=np.float) texture -= blackness[..., np.newaxis] * texture texture = Image.fromarray(texture.round().astype(np.uint8)) return Image.composite(texture, img, mask)
Example #29
Source File: visualization_utils.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.4) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') if image.shape[:2] != mask.shape: raise ValueError('The image has spatial dimensions %s but the mask has ' 'dimensions %s' % (image.shape[:2], mask.shape)) rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #30
Source File: visualization_utils.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.4) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') if image.shape[:2] != mask.shape: raise ValueError('The image has spatial dimensions %s but the mask has ' 'dimensions %s' % (image.shape[:2], mask.shape)) rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))