Python memory.Memory() Examples
The following are 19
code examples of memory.Memory().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
memory
, or try the search function
.
Example #1
Source File: syscalls.py From darkc0de-old-stuff with GNU General Public License v3.0 | 6 votes |
def __init__(self, mmemory, typeaccess=0) : if not isinstance(mmemory, Memory): raise TypeError("ERREUR") self.mmemory = mmemory self.mmemory.open("r", typeaccess) try : fichier = open("/usr/include/asm/unistd.h", "r") except IOError : print "No such file /usr/include/asm/unistd.h" sys.exit(-1) liste = fichier.readlines() fichier.close() count = 0 for i in liste : if(re.match("#define __NR_", i)) : l = string.split(i) if(l[2][0].isdigit()) : count = string.atoi(l[2], 10) self.lists_syscalls.append([count, l[1][5:]]) else : count = count + 1 self.lists_syscalls.append([count, l[1][5:]])
Example #2
Source File: model.py From hands-detection with MIT License | 5 votes |
def get_memory(self): cls = memory.LSHMemory if self.use_lsh else memory.Memory return cls(self.rep_dim, self.memory_size, self.vocab_size)
Example #3
Source File: model.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def get_memory(self): cls = memory.LSHMemory if self.use_lsh else memory.Memory return cls(self.rep_dim, self.memory_size, self.vocab_size)
Example #4
Source File: model.py From models with Apache License 2.0 | 5 votes |
def get_memory(self): cls = memory.LSHMemory if self.use_lsh else memory.Memory return cls(self.rep_dim, self.memory_size, self.vocab_size)
Example #5
Source File: model.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def get_memory(self): cls = memory.LSHMemory if self.use_lsh else memory.Memory return cls(self.rep_dim, self.memory_size, self.vocab_size)
Example #6
Source File: model.py From HumanRecognition with MIT License | 5 votes |
def get_memory(self): cls = memory.LSHMemory if self.use_lsh else memory.Memory return cls(self.rep_dim, self.memory_size, self.vocab_size)
Example #7
Source File: model.py From object_detection_with_tensorflow with MIT License | 5 votes |
def get_memory(self): cls = memory.LSHMemory if self.use_lsh else memory.Memory return cls(self.rep_dim, self.memory_size, self.vocab_size)
Example #8
Source File: model.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def get_memory(self): cls = memory.LSHMemory if self.use_lsh else memory.Memory return cls(self.rep_dim, self.memory_size, self.vocab_size)
Example #9
Source File: tasks.py From darkc0de-old-stuff with GNU General Public License v3.0 | 5 votes |
def __init__(self, mmemory, typeaccess=0) : if not isinstance(mmemory, Memory): raise TypeError("ERREUR") self.mmemory = mmemory self.symbols = Symbols(self.mmemory) self.typeaccess = typeaccess
Example #10
Source File: networks.py From darkc0de-old-stuff with GNU General Public License v3.0 | 5 votes |
def __init__(self, mmemory, typeaccess=0) : if not isinstance(mmemory, Memory): raise TypeError("ERREUR") self.mmemory = mmemory self.mmemory.open("r", typeaccess)
Example #11
Source File: model.py From DOTA_models with Apache License 2.0 | 5 votes |
def get_memory(self): cls = memory.LSHMemory if self.use_lsh else memory.Memory return cls(self.rep_dim, self.memory_size, self.vocab_size)
Example #12
Source File: worker.py From Reinforcement-Learning-Pytorch-Cartpole with MIT License | 5 votes |
def __init__(self, global_model, global_average_model, global_optimizer, global_ep, global_ep_r, res_queue, name): super(Worker, self).__init__() self.env = gym.make(env_name) self.env.seed(500) self.name = 'w%i' % name self.global_ep, self.global_ep_r, self.res_queue = global_ep, global_ep_r, res_queue self.global_model, self.global_average_model, self.global_optimizer = global_model, global_average_model, global_optimizer self.local_model = LocalModel(self.env.observation_space.shape[0], self.env.action_space.n) self.num_actions = self.env.action_space.n self.memory = Memory(replay_memory_capacity)
Example #13
Source File: model.py From Gun-Detector with Apache License 2.0 | 5 votes |
def get_memory(self): cls = memory.LSHMemory if self.use_lsh else memory.Memory return cls(self.rep_dim, self.memory_size, self.vocab_size)
Example #14
Source File: model.py From yolo_v2 with Apache License 2.0 | 5 votes |
def get_memory(self): cls = memory.LSHMemory if self.use_lsh else memory.Memory return cls(self.rep_dim, self.memory_size, self.vocab_size)
Example #15
Source File: train.py From Reinforcement-Learning-Pytorch-Cartpole with MIT License | 4 votes |
def main(): env = gym.make(env_name) env.seed(500) torch.manual_seed(500) num_inputs = env.observation_space.shape[0] num_actions = env.action_space.n print('state size:', num_inputs) print('action size:', num_actions) net = TRPO(num_inputs, num_actions) writer = SummaryWriter('logs') net.to(device) net.train() running_score = 0 steps = 0 loss = 0 for e in range(30000): done = False memory = Memory() score = 0 state = env.reset() state = torch.Tensor(state).to(device) state = state.unsqueeze(0) while not done: steps += 1 action = net.get_action(state) next_state, reward, done, _ = env.step(action) next_state = torch.Tensor(next_state) next_state = next_state.unsqueeze(0) mask = 0 if done else 1 reward = reward if not done or score == 499 else -1 action_one_hot = torch.zeros(2) action_one_hot[action] = 1 memory.push(state, next_state, action_one_hot, reward, mask) score += reward state = next_state loss = TRPO.train_model(net, memory.sample()) score = score if score == 500.0 else score + 1 running_score = 0.99 * running_score + 0.01 * score if e % log_interval == 0: print('{} episode | score: {:.2f}'.format( e, running_score)) writer.add_scalar('log/score', float(running_score), e) writer.add_scalar('log/loss', float(loss), e) if running_score > goal_score: break
Example #16
Source File: train.py From Reinforcement-Learning-Pytorch-Cartpole with MIT License | 4 votes |
def main(): env = gym.make(env_name) env.seed(500) torch.manual_seed(500) num_inputs = env.observation_space.shape[0] num_actions = env.action_space.n print('state size:', num_inputs) print('action size:', num_actions) net = TNPG(num_inputs, num_actions) writer = SummaryWriter('logs') net.to(device) net.train() running_score = 0 steps = 0 loss = 0 for e in range(30000): done = False memory = Memory() score = 0 state = env.reset() state = torch.Tensor(state).to(device) state = state.unsqueeze(0) while not done: steps += 1 action = net.get_action(state) next_state, reward, done, _ = env.step(action) next_state = torch.Tensor(next_state) next_state = next_state.unsqueeze(0) mask = 0 if done else 1 reward = reward if not done or score == 499 else -1 action_one_hot = torch.zeros(2) action_one_hot[action] = 1 memory.push(state, next_state, action_one_hot, reward, mask) score += reward state = next_state loss = TNPG.train_model(net, memory.sample()) score = score if score == 500.0 else score + 1 running_score = 0.99 * running_score + 0.01 * score if e % log_interval == 0: print('{} episode | score: {:.2f}'.format( e, running_score)) writer.add_scalar('log/score', float(running_score), e) writer.add_scalar('log/loss', float(loss), e) if running_score > goal_score: break
Example #17
Source File: worker.py From Reinforcement-Learning-Pytorch-Cartpole with MIT License | 4 votes |
def run(self): while self.global_ep.value < max_episode: self.local_model.pull_from_global_model(self.global_model) done = False score = 0 steps = 0 state = self.env.reset() state = torch.Tensor(state) state = state.unsqueeze(0) memory = Memory(n_step) while True: policy, value = self.local_model(state) action = self.get_action(policy, self.num_actions) next_state, reward, done, _ = self.env.step(action) next_state = torch.Tensor(next_state) next_state = next_state.unsqueeze(0) mask = 0 if done else 1 reward = reward if not done or score == 499 else -1 action_one_hot = torch.zeros(2) action_one_hot[action] = 1 memory.push(state, next_state, action_one_hot, reward, mask) score += reward state = next_state if len(memory) == n_step or done: batch = memory.sample() loss = self.local_model.push_to_global_model(batch, self.global_model, self.global_optimizer) self.local_model.pull_from_global_model(self.global_model) memory = Memory(n_step) if done: running_score = self.record(score, loss) break self.res_queue.put(None)
Example #18
Source File: train.py From Reinforcement-Learning-Pytorch-Cartpole with MIT License | 4 votes |
def main(): env = gym.make(env_name) env.seed(500) torch.manual_seed(500) num_inputs = env.observation_space.shape[0] num_actions = env.action_space.n env.close() global_target_model = Model(num_inputs, num_actions) global_online_model = Model(num_inputs, num_actions) global_target_model.train() global_online_model.train() global_target_model.load_state_dict(global_online_model.state_dict()) global_target_model.share_memory() global_online_model.share_memory() global_memory = Memory(replay_memory_capacity) global_ep, global_ep_r, res_queue, global_memory_pipe = mp.Value('i', 0), mp.Value('d', 0.), mp.Queue(), mp.Queue() writer = SummaryWriter('logs') n = 2 epsilons = [(i * 0.05 + 0.1) for i in range(n)] actors = [Actor(global_target_model, global_memory_pipe, global_ep, global_ep_r, epsilons[i], i) for i in range(n)] [w.start() for w in actors] learner = Learner(global_online_model, global_target_model, global_memory, global_memory_pipe, res_queue) learner.start() res = [] while True: r = res_queue.get() if r is not None: res.append(r) [ep, loss] = r # writer.add_scalar('log/score', float(ep_r), ep) writer.add_scalar('log/loss', float(loss), ep) else: break [w.join() for w in actors]
Example #19
Source File: worker.py From Reinforcement-Learning-Pytorch-Cartpole with MIT License | 4 votes |
def run(self): epsilon = 1.0 steps = 0 while self.global_ep.value < max_episode: if self.global_ep_r.value > goal_score: break done = False score = 0 state = self.env.reset() state = torch.Tensor(state).to(device) state = state.unsqueeze(0) memory = Memory(async_update_step) while not done: steps += 1 action = self.get_action(state, epsilon) next_state, reward, done, _ = self.env.step(action) next_state = torch.Tensor(next_state) next_state = next_state.unsqueeze(0) mask = 0 if done else 1 reward = reward if not done or score == 499 else -1 action_one_hot = np.zeros(2) action_one_hot[action] = 1 memory.push(state, next_state, action_one_hot, reward, mask) score += reward state = next_state epsilon -= 0.00001 epsilon = max(epsilon, 0.1) if len(memory) == async_update_step or done: batch = memory.sample() loss = QNet.train_model(self.online_net, self.target_net, self.optimizer, batch) memory = Memory(async_update_step) if done: self.record(score, epsilon, loss) break if steps % update_target == 0: self.update_target_model() score = score if score == 500.0 else score + 1 self.res_queue.put(None)