Python tensorflow.ConfigProto() Examples
The following are 30
code examples of tensorflow.ConfigProto().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: agents.py From soccer-matlab with BSD 2-Clause "Simplified" License | 7 votes |
def __init__(self): self.session = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,log_device_placement=False)) self.actor = networks.Actor_MLP(scope="actor1",units=[settings.S_DIM,100,settings.A_DIM],activations=[None,'relu','tanh'],trainable=True) self.old_actor = networks.Actor_MLP(scope="actor0",units=[settings.S_DIM,100,settings.A_DIM],activations=[None,'relu','tanh'],trainable=False) self.critic = networks.Critic_MLP(scope="critic1",units=[settings.S_DIM,100,1],activations=[None,'relu',None],trainable=True) self.state_tf = tf.placeholder(dtype=tf.float32,shape=[None,settings.S_DIM]) self.action_tf = tf.placeholder(dtype=tf.float32,shape=[None,settings.A_DIM]) self.return_tf = tf.placeholder(dtype=tf.float32,shape=[None,1]) self.adv_tf = tf.placeholder(dtype=tf.float32,shape=[None,1]) # global steps to keep track of training self.actor_step = tf.get_variable('actor_global_step', [], initializer=tf.constant_initializer(0), trainable=False) self.critic_step = tf.get_variable('critic_global_step', [], initializer=tf.constant_initializer(0), trainable=False) # build computation graphs self.actor.build_graph(self.state_tf,self.actor_step) self.old_actor.build_graph(self.state_tf,0) self.critic.build_graph(self.state_tf,self.critic_step) self.build_graph()
Example #2
Source File: run_mujoco.py From HardRLWithYoutube with MIT License | 6 votes |
def train(env_id, num_timesteps, seed): env = make_mujoco_env(env_id, seed) with tf.Session(config=tf.ConfigProto()): ob_dim = env.observation_space.shape[0] ac_dim = env.action_space.shape[0] with tf.variable_scope("vf"): vf = NeuralNetValueFunction(ob_dim, ac_dim) with tf.variable_scope("pi"): policy = GaussianMlpPolicy(ob_dim, ac_dim) learn(env, policy=policy, vf=vf, gamma=0.99, lam=0.97, timesteps_per_batch=2500, desired_kl=0.002, num_timesteps=num_timesteps, animate=False) env.close()
Example #3
Source File: nn_model.py From mercari-price-suggestion with MIT License | 6 votes |
def __init__(self, train_df, word_count, batch_size, epochs): tf.set_random_seed(4) session_conf = tf.ConfigProto(intra_op_parallelism_threads=2, inter_op_parallelism_threads=8) backend.set_session(tf.Session(graph=tf.get_default_graph(), config=session_conf)) self.batch_size = batch_size self.epochs = epochs self.max_name_seq = 10 self.max_item_desc_seq = 75 self.max_text = word_count + 1 self.max_brand = np.max(train_df.brand_name.max()) + 1 self.max_condition = np.max(train_df.item_condition_id.max()) + 1 self.max_subcat0 = np.max(train_df.subcat_0.max()) + 1 self.max_subcat1 = np.max(train_df.subcat_1.max()) + 1 self.max_subcat2 = np.max(train_df.subcat_2.max()) + 1
Example #4
Source File: ensemble_gpu.py From kaggle-carvana-2017 with MIT License | 6 votes |
def predictor(q, gpu, pq): config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) with sess.as_default(): model = create_model(gpu) while True: batch_fnames, x_batch = q.get() if x_batch is None: break preds = model.predict_on_batch(x_batch) for i, pred in enumerate(preds): filename = batch_fnames[i] pq.put((os.path.join(ensembling_dir, filename[:-4] + ".png"), pred))
Example #5
Source File: predict_multithreaded.py From kaggle-carvana-2017 with MIT License | 6 votes |
def predictor(q, gpu): config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) with sess.as_default(): model = create_model(gpu) while True: batch_fnames, x_batch = q.get() if x_batch is None: break preds = model.predict_on_batch(x_batch) if args.pred_tta: preds = undo_tta(preds, args.pred_tta) for i, pred in enumerate(preds): filename = batch_fnames[i] prediction = pred[:, 1:-1, :] array_to_img(prediction * 255).save(os.path.join(output_dir, filename.split('/')[-1][:-4] + ".png"))
Example #6
Source File: chptToBin.py From iAI with MIT License | 6 votes |
def chpt_to_dict_arrays_simple(file_name): """ Convert a checkpoint into into a dictionary of numpy arrays for later use in TensorRT NMT sample. """ config = tf.ConfigProto(allow_soft_placement=True) sess = tf.Session(config=config) saver = tf.train.import_meta_graph(file_name) dir_name = os.path.dirname(os.path.abspath(file_name)) saver.restore(sess, tf.train.latest_checkpoint(dir_name)) params = {} print ('\nFound the following trainable variables:') with sess.as_default(): variables = tf.trainable_variables() for v in variables: params[v.name] = v.eval(session=sess) print ("{0} {1}".format(v.name, params[v.name].shape)) #use default value params["forget_bias"] = 1.0 return params
Example #7
Source File: chptToBin.py From iAI with MIT License | 6 votes |
def chpt_to_dict_arrays_simple(file_name): """ Convert a checkpoint into into a dictionary of numpy arrays for later use in TensorRT NMT sample. """ config = tf.ConfigProto(allow_soft_placement=True) sess = tf.Session(config=config) saver = tf.train.import_meta_graph(file_name) dir_name = os.path.dirname(os.path.abspath(file_name)) saver.restore(sess, tf.train.latest_checkpoint(dir_name)) params = {} print ('\nFound the following trainable variables:') with sess.as_default(): variables = tf.trainable_variables() for v in variables: params[v.name] = v.eval(session=sess) print ("{0} {1}".format(v.name, params[v.name].shape)) #use default value params["forget_bias"] = 1.0 return params
Example #8
Source File: chptToBin.py From iAI with MIT License | 6 votes |
def chpt_to_dict_arrays_simple(file_name): """ Convert a checkpoint into into a dictionary of numpy arrays for later use in TensorRT NMT sample. """ config = tf.ConfigProto(allow_soft_placement=True) sess = tf.Session(config=config) saver = tf.train.import_meta_graph(file_name) dir_name = os.path.dirname(os.path.abspath(file_name)) saver.restore(sess, tf.train.latest_checkpoint(dir_name)) params = {} print ('\nFound the following trainable variables:') with sess.as_default(): variables = tf.trainable_variables() for v in variables: params[v.name] = v.eval(session=sess) print ("{0} {1}".format(v.name, params[v.name].shape)) #use default value params["forget_bias"] = 1.0 return params
Example #9
Source File: mdbt.py From ConvLab with MIT License | 6 votes |
def test_update(): os.environ["CUDA_VISIBLE_DEVICES"] = '0' _config = tf.ConfigProto() _config.gpu_options.allow_growth = True _config.allow_soft_placement = True start_time = time.time() mdbt = MDBTTracker() print('\tMDBT: model build time: {:.2f} seconds'.format(time.time() - start_time)) saver = tf.train.Saver() mdbt.restore_model(mdbt.sess, saver) # demo state history mdbt.state['history'] = [['null', 'I\'m trying to find an expensive restaurant in the centre part of town.'], [ 'The Cambridge Chop House is an good expensive restaurant in the centre of town. Would you like me to book it for you?', 'Yes, a table for 1 at 16:15 on sunday. I need the reference number.']] new_state = mdbt.update(None, 'hi, this is not good') print(json.dumps(new_state, indent=4)) print('all time: {:.2f} seconds'.format(time.time() - start_time))
Example #10
Source File: model_based_policy.py From cs294-112_hws with MIT License | 6 votes |
def _setup_graph(self): """ Sets up the tensorflow computation graph for training, prediction, and action selection The variables returned will be set as class attributes (see __init__) """ tf_config = tf.ConfigProto() tf_config.gpu_options.allow_growth = True sess = tf.Session(config=tf_config) ### PROBLEM 1 ### YOUR CODE HERE state_ph, action_ph, next_state_ph = self._setup_placeholders() next_state_pred = self._dynamics_func(state_ph, action_ph, False) loss, optimizer = self._setup_training(state_ph, next_state_ph, next_state_pred) ### PROBLEM 2 ### YOUR CODE HERE best_action = self._setup_action_selection(state_ph) sess.run(tf.global_variables_initializer()) return sess, state_ph, action_ph, next_state_ph, \ next_state_pred, loss, optimizer, best_action
Example #11
Source File: reaction.py From armchair-expert with MIT License | 6 votes |
def __init__(self, path: str = None, use_gpu=False): import tensorflow as tf from keras.models import Sequential from keras.layers import Dense from keras.backend import set_session self.model = Sequential() self.model.add(Dense(AOLReactionFeatureAnalyzer.NUM_FEATURES, activation='relu', input_dim=AOLReactionFeatureAnalyzer.NUM_FEATURES)) self.model.add(Dense(AOLReactionFeatureAnalyzer.NUM_FEATURES - 2, activation='relu')) self.model.add(Dense(1, activation='sigmoid')) self.model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) if use_gpu: config = tf.ConfigProto() config.gpu_options.allow_growth = True set_session(tf.Session(config=config))
Example #12
Source File: structure.py From armchair-expert with MIT License | 6 votes |
def __init__(self, use_gpu: bool = False): import tensorflow as tf from keras.models import Sequential from keras.layers import Dense, Embedding from keras.layers import LSTM from keras.backend import set_session latent_dim = StructureModel.SEQUENCE_LENGTH * 8 model = Sequential() model.add( Embedding(StructureFeatureAnalyzer.NUM_FEATURES, StructureFeatureAnalyzer.NUM_FEATURES, input_length=StructureModel.SEQUENCE_LENGTH)) model.add(LSTM(latent_dim, dropout=0.2, return_sequences=False)) model.add(Dense(StructureFeatureAnalyzer.NUM_FEATURES, activation='softmax')) model.summary() model.compile(loss='sparse_categorical_crossentropy', optimizer='adam') self.model = model if use_gpu: config = tf.ConfigProto() config.gpu_options.allow_growth = True set_session(tf.Session(config=config))
Example #13
Source File: interface.py From Generative-adversarial-Nets-in-NLP with Apache License 2.0 | 6 votes |
def train(self): # Construct model model = Transformer() print("Graph loaded") init = tf.global_variables_initializer() config = tf.ConfigProto() config.gpu_options.allow_growth = True # Start training sv = tf.train.Supervisor(logdir=pm.logdir, save_model_secs=0, init_op=init) saver = sv.saver with sv.managed_session(config=config) as sess: for epoch in range(1, pm.num_epochs + 1): if sv.should_stop(): break for _ in tqdm(range(model.num_batch), total=model.num_batch, ncols=70, leave=False, unit='b'): sess.run(model.optimizer) gs = sess.run(model.global_step) saver.save(sess, pm.logdir + '/model_epoch_{}_global_step_{}'.format(epoch, gs)) print("MSG : Done for training!")
Example #14
Source File: audio_feature_extractor.py From Tensorflow-Audio-Classification with Apache License 2.0 | 6 votes |
def __init__(self, checkpoint, pca_params, input_tensor_name, output_tensor_name): """Create a new Graph and a new Session for every VGGishExtractor object.""" super(VGGishExtractor, self).__init__() self.graph = tf.Graph() with self.graph.as_default(): vggish_slim.define_vggish_slim(training=False) sess_config = tf.ConfigProto(allow_soft_placement=True) sess_config.gpu_options.allow_growth = True self.sess = tf.Session(graph=self.graph, config=sess_config) vggish_slim.load_defined_vggish_slim_checkpoint(self.sess, checkpoint) # use the self.sess to init others self.input_tensor = self.graph.get_tensor_by_name(input_tensor_name) self.output_tensor = self.graph.get_tensor_by_name(output_tensor_name) # postprocessor self.postprocess = vggish_postprocess.Postprocessor(pca_params)
Example #15
Source File: run_atari.py From lirpg with MIT License | 6 votes |
def train(env_id, num_timesteps, seed, policy): ncpu = multiprocessing.cpu_count() if sys.platform == 'darwin': ncpu //= 2 config = tf.ConfigProto(allow_soft_placement=True, intra_op_parallelism_threads=ncpu, inter_op_parallelism_threads=ncpu) config.gpu_options.allow_growth = True #pylint: disable=E1101 tf.Session(config=config).__enter__() env = VecFrameStack(make_atari_env(env_id, 8, seed), 4) policy = {'cnn' : CnnPolicy, 'lstm' : LstmPolicy, 'lnlstm' : LnLstmPolicy}[policy] ppo2.learn(policy=policy, env=env, nsteps=128, nminibatches=4, lam=0.95, gamma=0.99, noptepochs=4, log_interval=1, ent_coef=.01, lr=lambda f : f * 2.5e-4, cliprange=lambda f : f * 0.1, total_timesteps=int(num_timesteps * 1.1))
Example #16
Source File: run_mujoco.py From lirpg with MIT License | 6 votes |
def train(env_id, num_timesteps, seed): env = make_mujoco_env(env_id, seed) with tf.Session(config=tf.ConfigProto()): ob_dim = env.observation_space.shape[0] ac_dim = env.action_space.shape[0] with tf.variable_scope("vf"): vf = NeuralNetValueFunction(ob_dim, ac_dim) with tf.variable_scope("pi"): policy = GaussianMlpPolicy(ob_dim, ac_dim) learn(env, policy=policy, vf=vf, gamma=0.99, lam=0.97, timesteps_per_batch=2500, desired_kl=0.002, num_timesteps=num_timesteps, animate=False) env.close()
Example #17
Source File: trainer_lib.py From fine-lm with MIT License | 6 votes |
def create_session_config(log_device_placement=False, enable_graph_rewriter=False, gpu_mem_fraction=0.95, use_tpu=False, inter_op_parallelism_threads=0, intra_op_parallelism_threads=0): """The TensorFlow Session config to use.""" if use_tpu: graph_options = tf.GraphOptions() else: if enable_graph_rewriter: rewrite_options = rewriter_config_pb2.RewriterConfig() rewrite_options.layout_optimizer = rewriter_config_pb2.RewriterConfig.ON graph_options = tf.GraphOptions(rewrite_options=rewrite_options) else: graph_options = tf.GraphOptions( optimizer_options=tf.OptimizerOptions( opt_level=tf.OptimizerOptions.L1, do_function_inlining=False)) gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_mem_fraction) config = tf.ConfigProto( allow_soft_placement=True, graph_options=graph_options, gpu_options=gpu_options, log_device_placement=log_device_placement, inter_op_parallelism_threads=inter_op_parallelism_threads, intra_op_parallelism_threads=intra_op_parallelism_threads) return config
Example #18
Source File: tfutil.py From disentangling_conditional_gans with MIT License | 6 votes |
def create_session(config_dict=dict(), force_as_default=False): config = tf.ConfigProto() for key, value in config_dict.items(): fields = key.split('.') obj = config for field in fields[:-1]: obj = getattr(obj, field) setattr(obj, fields[-1], value) session = tf.Session(config=config) if force_as_default: session._default_session = session.as_default() session._default_session.enforce_nesting = False session._default_session.__enter__() return session #---------------------------------------------------------------------------- # Initialize all tf.Variables that have not already been initialized. # Equivalent to the following, but more efficient and does not bloat the tf graph: # tf.variables_initializer(tf.report_unitialized_variables()).run()
Example #19
Source File: sampling.py From dcnn_textvae with MIT License | 5 votes |
def sampling(): batchloader = BatchLoader(with_label=True) sess_conf = tf.ConfigProto( gpu_options = tf.GPUOptions( # allow_growth = True ) ) with tf.Graph().as_default(): with tf.Session(config=sess_conf) as sess: with tf.variable_scope("VAE"): vae_restored = VAE[FLAGS.VAE_NAME](batchloader, is_training=False, ru=False) saver = tf.train.Saver() saver.restore(sess, MODEL_DIR + "/model40.ckpt") itr = SAMPLE_NUM // FLAGS.BATCH_SIZE res = SAMPLE_NUM - itr * FLAGS.BATCH_SIZE generated_texts = [] lv_list= [] for i in range(itr+1): z = np.random.normal(loc=0.0, scale=1.0, size=[FLAGS.BATCH_SIZE, FLAGS.LATENT_VARIABLE_SIZE]) sample_logits = sess.run(vae_restored.logits, feed_dict = {vae_restored.latent_variables: z}) lv_list.extend(z) if i==itr: sample_num = res else: sample_num = FLAGS.BATCH_SIZE sample_texts = batchloader.logits2str(logits=sample_logits, sample_num=sample_num) generated_texts.extend(sample_texts) for i in range(SAMPLE_NUM): log_and_print(SAVE_FILE, generated_texts[i])
Example #20
Source File: util.py From HardRLWithYoutube with MIT License | 5 votes |
def simple_test(env_fn, learn_fn, min_reward_fraction, n_trials=N_TRIALS): np.random.seed(0) np_random.seed(0) env = DummyVecEnv([env_fn]) with tf.Graph().as_default(), tf.Session(config=tf.ConfigProto(allow_soft_placement=True)).as_default(): tf.set_random_seed(0) model = learn_fn(env) sum_rew = 0 done = True for i in range(n_trials): if done: obs = env.reset() state = model.initial_state if state is not None: a, v, state, _ = model.step(obs, S=state, M=[False]) else: a, v, _, _ = model.step(obs) obs, rew, done, _ = env.step(a) sum_rew += float(rew) print("Reward in {} trials is {}".format(n_trials, sum_rew)) assert sum_rew > min_reward_fraction * n_trials, \ 'sum of rewards {} is less than {} of the total number of trials {}'.format(sum_rew, min_reward_fraction, n_trials)
Example #21
Source File: utils.py From ppo-lstm-parallel with MIT License | 5 votes |
def create_session(env_opts, on_gpu): import tensorflow as tf if env_opts["use_gpu"] and on_gpu: gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=env_opts["mem_fraction"]) session = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) else: gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.05) session = tf.Session(config=tf.ConfigProto(device_count={'CPU': 1, 'GPU': 0}, gpu_options=gpu_options)) return session
Example #22
Source File: xnn.py From tensorflow-XNN with MIT License | 5 votes |
def _init_session(self): config = tf.ConfigProto(device_count={"gpu": 0}) config.gpu_options.allow_growth = True # the following reduce the training time for a snapshot from 180~220s to 100s in kernel config.intra_op_parallelism_threads = 4 config.inter_op_parallelism_threads = 4 sess = tf.Session(config=config) sess.run(tf.global_variables_initializer()) # max_to_keep=None, keep all the models saver = tf.train.Saver(max_to_keep=None) return sess, saver
Example #23
Source File: face_model.py From insightface with MIT License | 5 votes |
def __init__(self, args): model = edict() with tf.Graph().as_default(): config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.2 sess = tf.Session(config=config) #sess = tf.Session() with sess.as_default(): self.pnet, self.rnet, self.onet = detect_face.create_mtcnn(sess, None) self.threshold = args.threshold self.det_minsize = 50 self.det_threshold = [0.4,0.6,0.6] self.det_factor = 0.9 _vec = args.image_size.split(',') assert len(_vec)==2 self.image_size = (int(_vec[0]), int(_vec[1])) _vec = args.model.split(',') assert len(_vec)==2 prefix = _vec[0] epoch = int(_vec[1]) print('loading',prefix, epoch) self.model = edict() self.model.ctx = mx.gpu(args.gpu) self.model.sym, self.model.arg_params, self.model.aux_params = mx.model.load_checkpoint(prefix, epoch) self.model.arg_params, self.model.aux_params = ch_dev(self.model.arg_params, self.model.aux_params, self.model.ctx) all_layers = self.model.sym.get_internals() self.model.sym = all_layers['fc1_output']
Example #24
Source File: evaluate_supervise.py From GroundeR with MIT License | 5 votes |
def run_evaluate(): train_list = [] test_list = [] config = Config() train_list = load_img_id_list(config.train_file_list) test_list = load_img_id_list(config.test_file_list) config.save_path = config.save_path + '_' + args.model_name assert(os.path.isdir(config.save_path)) restore_id = args.restore_id assert(restore_id > 0) cur_dataset = dataprovider(train_list, test_list, config.img_feat_dir, config.sen_dir, config.vocab_size, batch_size=config.batch_size) model = ground_model(config) gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.3) with tf.Graph().as_default(): loss, train_op, loss_vec, logits = model.build_model() # Create a session for running Ops on the Graph. sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) # Run the Op to initialize the variables. init = tf.global_variables_initializer() sess.run(init) saver = tf.train.Saver(max_to_keep=100) feed_dict = update_feed_dict(cur_dataset, model, False) print 'Restore model_%d'%restore_id saver.restore(sess, './model/%s/model_%d.ckpt'%(config.save_path, restore_id)) print "-----------------------------------------------" eval_accu = run_eval(sess, cur_dataset, model, logits, feed_dict) print "-----------------------------------------------"
Example #25
Source File: main.py From mac-network with Apache License 2.0 | 5 votes |
def setSession(): sessionConfig = tf.ConfigProto(allow_soft_placement = True, log_device_placement = False) if config.allowGrowth: sessionConfig.gpu_options.allow_growth = True if config.maxMemory < 1.0: sessionConfig.gpu_options.per_process_gpu_memory_fraction = config.maxMemory return sessionConfig ############################################## savers ############################################# # Initializes savers (standard, optional exponential-moving-average and optional for subset of variables)
Example #26
Source File: build.py From Automatic-Identification-and-Counting-of-Blood-Cells with GNU General Public License v3.0 | 5 votes |
def setup_meta_ops(self): cfg = dict({ 'allow_soft_placement': False, 'log_device_placement': False }) utility = min(self.FLAGS.gpu, 1.) if utility > 0.0: self.say('GPU mode with {} usage'.format(utility)) cfg['gpu_options'] = tf.GPUOptions( per_process_gpu_memory_fraction=utility) cfg['allow_soft_placement'] = True else: self.say('Running entirely on CPU') cfg['device_count'] = {'GPU': 0} if self.FLAGS.train: self.build_train_op() if self.FLAGS.summary: self.summary_op = tf.summary.merge_all() self.writer = tf.summary.FileWriter(self.FLAGS.summary + 'train') self.sess = tf.Session(config=tf.ConfigProto(**cfg)) self.sess.run(tf.global_variables_initializer()) if not self.ntrain: return self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=self.FLAGS.keep) if self.FLAGS.load != 0: self.load_from_ckpt() if self.FLAGS.summary: self.writer.add_graph(self.sess.graph)
Example #27
Source File: util.py From HardRLWithYoutube with MIT License | 5 votes |
def reward_per_episode_test(env_fn, learn_fn, min_avg_reward, n_trials=N_EPISODES): env = DummyVecEnv([env_fn]) with tf.Graph().as_default(), tf.Session(config=tf.ConfigProto(allow_soft_placement=True)).as_default(): model = learn_fn(env) N_TRIALS = 100 observations, actions, rewards = rollout(env, model, N_TRIALS) rewards = [sum(r) for r in rewards] avg_rew = sum(rewards) / N_TRIALS print("Average reward in {} episodes is {}".format(n_trials, avg_rew)) assert avg_rew > min_avg_reward, \ 'average reward in {} episodes ({}) is less than {}'.format(n_trials, avg_rew, min_avg_reward)
Example #28
Source File: train_ac_exploration_f18.py From cs294-112_hws with MIT License | 5 votes |
def init_tf_sess(self): tf_config = tf.ConfigProto(inter_op_parallelism_threads=1, intra_op_parallelism_threads=1) tf_config.gpu_options.allow_growth = True # may need if using GPU self.sess = tf.Session(config=tf_config) self.sess.__enter__() # equivalent to `with self.sess:` tf.global_variables_initializer().run() #pylint: disable=E1101
Example #29
Source File: run_mujoco.py From lirpg with MIT License | 5 votes |
def train(env_id, num_timesteps, seed, policy, r_ex_coef, r_in_coef, lr_alpha, lr_beta, reward_freq): from baselines.common import set_global_seeds from baselines.common.vec_env.vec_normalize import VecNormalize from baselines.ppo2 import ppo2 from baselines.ppo2.policies import MlpPolicy, MlpPolicyIntrinsicReward import gym import tensorflow as tf from baselines.common.vec_env.dummy_vec_env import DummyVecEnv ncpu = 1 config = tf.ConfigProto(allow_soft_placement=True, intra_op_parallelism_threads=ncpu, inter_op_parallelism_threads=ncpu) config.gpu_options.allow_growth = True tf.Session(config=config).__enter__() def make_env(): env = gym.make(env_id) env = bench.Monitor(env, logger.get_dir()) return env env = DummyVecEnv([make_env]) env = VecNormalize(env) set_global_seeds(seed) if policy == 'mlp': policy = MlpPolicy elif policy == 'mlp_int': policy = MlpPolicyIntrinsicReward else: raise NotImplementedError ppo2.learn(policy=policy, env=env, nsteps=2048, nminibatches=32, lam=0.95, gamma=0.99, noptepochs=10, log_interval=1, ent_coef=0.0, lr_alpha=lr_alpha, cliprange=0.2, total_timesteps=num_timesteps, r_ex_coef=r_ex_coef, r_in_coef=r_in_coef, lr_beta=lr_beta, reward_freq=reward_freq)
Example #30
Source File: build.py From Traffic_sign_detection_YOLO with MIT License | 5 votes |
def setup_meta_ops(self): cfg = dict({ 'allow_soft_placement': False, 'log_device_placement': False }) utility = min(self.FLAGS.gpu, 1.) if utility > 0.0: self.say('GPU mode with {} usage'.format(utility)) cfg['gpu_options'] = tf.GPUOptions( per_process_gpu_memory_fraction = utility) cfg['allow_soft_placement'] = True else: self.say('Running entirely on CPU') cfg['device_count'] = {'GPU': 0} if self.FLAGS.train: self.build_train_op() if self.FLAGS.summary: self.summary_op = tf.summary.merge_all() self.writer = tf.summary.FileWriter(self.FLAGS.summary + 'train') self.sess = tf.Session(config = tf.ConfigProto(**cfg)) self.sess.run(tf.global_variables_initializer()) if not self.ntrain: return self.saver = tf.train.Saver(tf.global_variables(), max_to_keep = self.FLAGS.keep) if self.FLAGS.load != 0: self.load_from_ckpt() if self.FLAGS.summary: self.writer.add_graph(self.sess.graph)