Python tensorflow.constant_initializer() Examples
The following are 30
code examples of tensorflow.constant_initializer().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: agents.py From soccer-matlab with BSD 2-Clause "Simplified" License | 7 votes |
def __init__(self): self.session = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,log_device_placement=False)) self.actor = networks.Actor_MLP(scope="actor1",units=[settings.S_DIM,100,settings.A_DIM],activations=[None,'relu','tanh'],trainable=True) self.old_actor = networks.Actor_MLP(scope="actor0",units=[settings.S_DIM,100,settings.A_DIM],activations=[None,'relu','tanh'],trainable=False) self.critic = networks.Critic_MLP(scope="critic1",units=[settings.S_DIM,100,1],activations=[None,'relu',None],trainable=True) self.state_tf = tf.placeholder(dtype=tf.float32,shape=[None,settings.S_DIM]) self.action_tf = tf.placeholder(dtype=tf.float32,shape=[None,settings.A_DIM]) self.return_tf = tf.placeholder(dtype=tf.float32,shape=[None,1]) self.adv_tf = tf.placeholder(dtype=tf.float32,shape=[None,1]) # global steps to keep track of training self.actor_step = tf.get_variable('actor_global_step', [], initializer=tf.constant_initializer(0), trainable=False) self.critic_step = tf.get_variable('critic_global_step', [], initializer=tf.constant_initializer(0), trainable=False) # build computation graphs self.actor.build_graph(self.state_tf,self.actor_step) self.old_actor.build_graph(self.state_tf,0) self.critic.build_graph(self.state_tf,self.critic_step) self.build_graph()
Example #2
Source File: ops.py From CartoonGAN-Tensorflow with MIT License | 6 votes |
def deconv(x, channels, kernel=4, stride=2, use_bias=True, sn=False, scope='deconv_0'): with tf.variable_scope(scope): x_shape = x.get_shape().as_list() output_shape = [x_shape[0], x_shape[1]*stride, x_shape[2]*stride, channels] if sn : w = tf.get_variable("kernel", shape=[kernel, kernel, channels, x.get_shape()[-1]], initializer=weight_init, regularizer=weight_regularizer) x = tf.nn.conv2d_transpose(x, filter=spectral_norm(w), output_shape=output_shape, strides=[1, stride, stride, 1], padding='SAME') if use_bias : bias = tf.get_variable("bias", [channels], initializer=tf.constant_initializer(0.0)) x = tf.nn.bias_add(x, bias) else : x = tf.layers.conv2d_transpose(inputs=x, filters=channels, kernel_size=kernel, kernel_initializer=weight_init, kernel_regularizer=weight_regularizer, strides=stride, padding='SAME', use_bias=use_bias) return x ################################################################################## # Residual-block ##################################################################################
Example #3
Source File: cifarnet.py From DOTA_models with Apache License 2.0 | 6 votes |
def cifarnet_arg_scope(weight_decay=0.004): """Defines the default cifarnet argument scope. Args: weight_decay: The weight decay to use for regularizing the model. Returns: An `arg_scope` to use for the inception v3 model. """ with slim.arg_scope( [slim.conv2d], weights_initializer=tf.truncated_normal_initializer(stddev=5e-2), activation_fn=tf.nn.relu): with slim.arg_scope( [slim.fully_connected], biases_initializer=tf.constant_initializer(0.1), weights_initializer=trunc_normal(0.04), weights_regularizer=slim.l2_regularizer(weight_decay), activation_fn=tf.nn.relu) as sc: return sc
Example #4
Source File: skip_thoughts_model.py From DOTA_models with Apache License 2.0 | 6 votes |
def _initialize_gru_cell(self, num_units): """Initializes a GRU cell. The Variables of the GRU cell are initialized in a way that exactly matches the skip-thoughts paper: recurrent weights are initialized from random orthonormal matrices and non-recurrent weights are initialized from random uniform matrices. Args: num_units: Number of output units. Returns: cell: An instance of RNNCell with variable initializers that match the skip-thoughts paper. """ return gru_cell.LayerNormGRUCell( num_units, w_initializer=self.uniform_initializer, u_initializer=random_orthonormal_initializer, b_initializer=tf.constant_initializer(0.0))
Example #5
Source File: modules.py From dc_tts with Apache License 2.0 | 6 votes |
def highwaynet(inputs, num_units=None, scope="highwaynet", reuse=None): '''Highway networks, see https://arxiv.org/abs/1505.00387 Args: inputs: A 3D tensor of shape [N, T, W]. num_units: An int or `None`. Specifies the number of units in the highway layer or uses the input size if `None`. scope: Optional scope for `variable_scope`. reuse: Boolean, whether to reuse the weights of a previous layer by the same name. Returns: A 3D tensor of shape [N, T, W]. ''' if not num_units: num_units = inputs.get_shape()[-1] with tf.variable_scope(scope, reuse=reuse): H = tf.layers.dense(inputs, units=num_units, activation=tf.nn.relu, name="dense1") T = tf.layers.dense(inputs, units=num_units, activation=tf.nn.sigmoid, bias_initializer=tf.constant_initializer(-1.0), name="dense2") outputs = H * T + inputs * (1. - T) return outputs
Example #6
Source File: optimization_test.py From BERT-Classification-Tutorial with Apache License 2.0 | 6 votes |
def test_adam(self): with self.test_session() as sess: w = tf.get_variable( "w", shape=[3], initializer=tf.constant_initializer([0.1, -0.2, -0.1])) x = tf.constant([0.4, 0.2, -0.5]) loss = tf.reduce_mean(tf.square(x - w)) tvars = tf.trainable_variables() grads = tf.gradients(loss, tvars) global_step = tf.train.get_or_create_global_step() optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2) train_op = optimizer.apply_gradients(zip(grads, tvars), global_step) init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) sess.run(init_op) for _ in range(100): sess.run(train_op) w_np = sess.run(w) self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2)
Example #7
Source File: neural_gpu.py From DOTA_models with Apache License 2.0 | 6 votes |
def conv_linear(args, kw, kh, nin, nout, rate, do_bias, bias_start, prefix): """Convolutional linear map.""" if not isinstance(args, (list, tuple)): args = [args] with tf.variable_scope(prefix): with tf.device("/cpu:0"): k = tf.get_variable("CvK", [kw, kh, nin, nout]) if len(args) == 1: arg = args[0] else: arg = tf.concat(axis=3, values=args) res = tf.nn.convolution(arg, k, dilation_rate=(rate, 1), padding="SAME") if not do_bias: return res with tf.device("/cpu:0"): bias_term = tf.get_variable( "CvB", [nout], initializer=tf.constant_initializer(bias_start)) bias_term = tf.reshape(bias_term, [1, 1, 1, nout]) return res + bias_term
Example #8
Source File: blocks_std.py From DOTA_models with Apache License 2.0 | 6 votes |
def __init__(self, initializer=Bias(0), name=None): """Initializes Bias block. |initializer| parameter have two special cases. 1. If initializer is None, then this block works as a PassThrough. 2. If initializer is a Bias class object, then tf.constant_initializer is used with the stored value. Args: initializer: An initializer for the bias variable. name: Name of this block. """ super(BiasAdd, self).__init__(name) with self._BlockScope(): if isinstance(initializer, Bias): self._initializer = tf.constant_initializer(value=initializer.value) else: self._initializer = initializer self._bias = None
Example #9
Source File: objective.py From DOTA_models with Apache License 2.0 | 6 votes |
def __init__(self, learning_rate, clip_norm=5, policy_weight=1.0, critic_weight=0.1, tau=0.1, gamma=1.0, rollout=10, eps_lambda=0.0, clip_adv=None): super(ActorCritic, self).__init__(learning_rate, clip_norm=clip_norm) self.policy_weight = policy_weight self.critic_weight = critic_weight self.tau = tau self.gamma = gamma self.rollout = rollout self.clip_adv = clip_adv self.eps_lambda = tf.get_variable( # TODO: need a better way 'eps_lambda', [], initializer=tf.constant_initializer(eps_lambda)) self.new_eps_lambda = tf.placeholder(tf.float32, []) self.assign_eps_lambda = self.eps_lambda.assign( 0.95 * self.eps_lambda + 0.05 * self.new_eps_lambda)
Example #10
Source File: density_model.py From cs294-112_hws with MIT License | 6 votes |
def make_encoder(self, state, z_size, scope, n_layers, hid_size): """ ### PROBLEM 3 ### YOUR CODE HERE args: state: tf variable z_size: output dimension of the encoder network scope: scope name n_layers: number of layers of the encoder network hid_size: hidden dimension of encoder network TODO: 1. z_mean: the output of a neural network that takes the state as input, has output dimension z_size, n_layers layers, and hidden dimension hid_size 2. z_logstd: a trainable variable, initialized to 0 shape (z_size,) Hint: use build_mlp """ z_mean = build_mlp(state, z_size, scope, n_layers, hid_size) z_logstd = tf.get_variable('z_logstd', shape=z_size, trainable=True, initializer=tf.constant_initializer(value=0.)) return tfp.distributions.MultivariateNormalDiag(loc=z_mean, scale_diag=tf.exp(z_logstd))
Example #11
Source File: transformer_nat.py From fine-lm with MIT License | 6 votes |
def init_vq_bottleneck(bottleneck_size, hidden_size): """Get lookup table for VQ bottleneck.""" means = tf.get_variable( name="means", shape=[bottleneck_size, hidden_size], initializer=tf.uniform_unit_scaling_initializer()) ema_count = tf.get_variable( name="ema_count", shape=[bottleneck_size], initializer=tf.constant_initializer(0), trainable=False) with tf.colocate_with(means): ema_means = tf.get_variable( name="ema_means", initializer=means.initialized_value(), trainable=False) return means, ema_means, ema_count
Example #12
Source File: utils.py From lirpg with MIT License | 6 votes |
def lstm(xs, ms, s, scope, nh, init_scale=1.0): nbatch, nin = [v.value for v in xs[0].get_shape()] nsteps = len(xs) with tf.variable_scope(scope): wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(init_scale)) wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init(init_scale)) b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0)) c, h = tf.split(axis=1, num_or_size_splits=2, value=s) for idx, (x, m) in enumerate(zip(xs, ms)): c = c*(1-m) h = h*(1-m) z = tf.matmul(x, wx) + tf.matmul(h, wh) + b i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z) i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f) o = tf.nn.sigmoid(o) u = tf.tanh(u) c = f*c + i*u h = o*tf.tanh(c) xs[idx] = h s = tf.concat(axis=1, values=[c, h]) return xs, s
Example #13
Source File: net.py From progressive_growing_of_GANs with MIT License | 6 votes |
def conv2d(self, input_, n_filters, k_size, padding='same'): if not self.cfg.weight_scale: return tf.layers.conv2d(input_, n_filters, k_size, padding=padding) n_feats_in = input_.get_shape().as_list()[-1] fan_in = k_size * k_size * n_feats_in c = tf.constant(np.sqrt(2. / fan_in), dtype=tf.float32) kernel_init = tf.random_normal_initializer(stddev=1.) w_shape = [k_size, k_size, n_feats_in, n_filters] w = tf.get_variable('kernel', shape=w_shape, initializer=kernel_init) w = c * w strides = [1, 1, 1, 1] net = tf.nn.conv2d(input_, w, strides, padding=padding.upper()) b = tf.get_variable('bias', [n_filters], initializer=tf.constant_initializer(0.)) net = tf.nn.bias_add(net, b) return net
Example #14
Source File: modules.py From kss with Apache License 2.0 | 6 votes |
def highwaynet(inputs, num_units=None, scope="highwaynet", reuse=None): '''Highway networks, see https://arxiv.org/abs/1505.00387 Args: inputs: A 3D tensor of shape [N, T, W]. num_units: An int or `None`. Specifies the number of units in the highway layer or uses the input size if `None`. scope: Optional scope for `variable_scope`. reuse: Boolean, whether to reuse the weights of a previous layer by the same name. Returns: A 3D tensor of shape [N, T, W]. ''' if not num_units: num_units = inputs.get_shape()[-1] with tf.variable_scope(scope, reuse=reuse): H = tf.layers.dense(inputs, units=num_units, activation=tf.nn.relu, name="dense1") T = tf.layers.dense(inputs, units=num_units, activation=tf.nn.sigmoid, bias_initializer=tf.constant_initializer(-1.0), name="dense2") outputs = H * T + inputs * (1. - T) return outputs
Example #15
Source File: utils.py From HardRLWithYoutube with MIT License | 6 votes |
def conv(x, scope, *, nf, rf, stride, pad='VALID', init_scale=1.0, data_format='NHWC', one_dim_bias=False): if data_format == 'NHWC': channel_ax = 3 strides = [1, stride, stride, 1] bshape = [1, 1, 1, nf] elif data_format == 'NCHW': channel_ax = 1 strides = [1, 1, stride, stride] bshape = [1, nf, 1, 1] else: raise NotImplementedError bias_var_shape = [nf] if one_dim_bias else [1, nf, 1, 1] nin = x.get_shape()[channel_ax].value wshape = [rf, rf, nin, nf] with tf.variable_scope(scope): w = tf.get_variable("w", wshape, initializer=ortho_init(init_scale)) b = tf.get_variable("b", bias_var_shape, initializer=tf.constant_initializer(0.0)) if not one_dim_bias and data_format == 'NHWC': b = tf.reshape(b, bshape) return tf.nn.conv2d(x, w, strides=strides, padding=pad, data_format=data_format) + b
Example #16
Source File: utils.py From HardRLWithYoutube with MIT License | 6 votes |
def lstm(xs, ms, s, scope, nh, init_scale=1.0): nbatch, nin = [v.value for v in xs[0].get_shape()] with tf.variable_scope(scope): wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(init_scale)) wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init(init_scale)) b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0)) c, h = tf.split(axis=1, num_or_size_splits=2, value=s) for idx, (x, m) in enumerate(zip(xs, ms)): c = c*(1-m) h = h*(1-m) z = tf.matmul(x, wx) + tf.matmul(h, wh) + b i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z) i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f) o = tf.nn.sigmoid(o) u = tf.tanh(u) c = f*c + i*u h = o*tf.tanh(c) xs[idx] = h s = tf.concat(axis=1, values=[c, h]) return xs, s
Example #17
Source File: baseop.py From Automatic-Identification-and-Counting-of-Blood-Cells with GNU General Public License v3.0 | 6 votes |
def wrap_variable(self, var): """wrap layer.w into variables""" val = self.lay.w.get(var, None) if val is None: shape = self.lay.wshape[var] args = [0., 1e-2, shape] if 'moving_mean' in var: val = np.zeros(shape) elif 'moving_variance' in var: val = np.ones(shape) else: val = np.random.normal(*args) self.lay.w[var] = val.astype(np.float32) self.act = 'Init ' if not self.var: return val = self.lay.w[var] self.lay.w[var] = tf.constant_initializer(val) if var in self._SLIM: return with tf.variable_scope(self.scope): self.lay.w[var] = tf.get_variable(var, shape = self.lay.wshape[var], dtype = tf.float32, initializer = self.lay.w[var])
Example #18
Source File: utils.py From lirpg with MIT License | 6 votes |
def conv(x, scope, *, nf, rf, stride, pad='VALID', init_scale=1.0, data_format='NHWC'): if data_format == 'NHWC': channel_ax = 3 strides = [1, stride, stride, 1] bshape = [1, 1, 1, nf] elif data_format == 'NCHW': channel_ax = 1 strides = [1, 1, stride, stride] bshape = [1, nf, 1, 1] else: raise NotImplementedError nin = x.get_shape()[channel_ax].value wshape = [rf, rf, nin, nf] with tf.variable_scope(scope): w = tf.get_variable("w", wshape, initializer=ortho_init(init_scale)) b = tf.get_variable("b",bshape, initializer=tf.constant_initializer(0.0)) return b + tf.nn.conv2d(x, w, strides=strides, padding=pad, data_format=data_format)
Example #19
Source File: model_train.py From ICDAR-2019-SROIE with MIT License | 6 votes |
def Bilstm(net, input_channel, hidden_unit_num, output_channel, scope_name): # width--->time step with tf.variable_scope(scope_name) as scope: shape = tf.shape(net) N, H, W, C = shape[0], shape[1], shape[2], shape[3] net = tf.reshape(net, [N * H, W, C]) net.set_shape([None, None, input_channel]) lstm_fw_cell = tf.contrib.rnn.LSTMCell(hidden_unit_num, state_is_tuple=True) lstm_bw_cell = tf.contrib.rnn.LSTMCell(hidden_unit_num, state_is_tuple=True) lstm_out, last_state = tf.nn.bidirectional_dynamic_rnn(lstm_fw_cell, lstm_bw_cell, net, dtype=tf.float32) lstm_out = tf.concat(lstm_out, axis=-1) lstm_out = tf.reshape(lstm_out, [N * H * W, 2 * hidden_unit_num]) init_weights = tf.contrib.layers.variance_scaling_initializer(factor=0.01, mode='FAN_AVG', uniform=False) init_biases = tf.constant_initializer(0.0) weights = make_var('weights', [2 * hidden_unit_num, output_channel], init_weights) biases = make_var('biases', [output_channel], init_biases) outputs = tf.matmul(lstm_out, weights) + biases outputs = tf.reshape(outputs, [N, H, W, output_channel]) return outputs
Example #20
Source File: baseop.py From Traffic_sign_detection_YOLO with MIT License | 6 votes |
def wrap_variable(self, var): """wrap layer.w into variables""" val = self.lay.w.get(var, None) if val is None: shape = self.lay.wshape[var] args = [0., 1e-2, shape] if 'moving_mean' in var: val = np.zeros(shape) elif 'moving_variance' in var: val = np.ones(shape) else: val = np.random.normal(*args) self.lay.w[var] = val.astype(np.float32) self.act = 'Init ' if not self.var: return val = self.lay.w[var] self.lay.w[var] = tf.constant_initializer(val) if var in self._SLIM: return with tf.variable_scope(self.scope): self.lay.w[var] = tf.get_variable(var, shape = self.lay.wshape[var], dtype = tf.float32, initializer = self.lay.w[var])
Example #21
Source File: ops.py From Chinese-Character-and-Calligraphic-Image-Processing with MIT License | 6 votes |
def conditional_instance_norm(x, scope_bn, y1=None, y2=None, alpha=1): mean, var = tf.nn.moments(x, axes=[1, 2], keep_dims=True) if y1==None: beta = tf.get_variable(name=scope_bn + 'beta', shape=[x.shape[-1]], initializer=tf.constant_initializer([0.]), trainable=True) # label_nums x C gamma = tf.get_variable(name=scope_bn + 'gamma', shape=[x.shape[-1]], initializer=tf.constant_initializer([1.]), trainable=True) # label_nums x C else: beta = tf.get_variable(name=scope_bn+'beta', shape=[y1.shape[-1], x.shape[-1]], initializer=tf.constant_initializer([0.]), trainable=True) # label_nums x C gamma = tf.get_variable(name=scope_bn+'gamma', shape=[y1.shape[-1], x.shape[-1]], initializer=tf.constant_initializer([1.]), trainable=True) # label_nums x C beta1 = tf.matmul(y1, beta) gamma1 = tf.matmul(y1, gamma) beta2 = tf.matmul(y2, beta) gamma2 = tf.matmul(y2, gamma) beta = alpha * beta1 + (1. - alpha) * beta2 gamma = alpha * gamma1 + (1. - alpha) * gamma2 x = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-10) return x
Example #22
Source File: cifarnet.py From DeepLab_v3 with MIT License | 6 votes |
def cifarnet_arg_scope(weight_decay=0.004): """Defines the default cifarnet argument scope. Args: weight_decay: The weight decay to use for regularizing the model. Returns: An `arg_scope` to use for the inception v3 model. """ with slim.arg_scope( [slim.conv2d], weights_initializer=tf.truncated_normal_initializer(stddev=5e-2), activation_fn=tf.nn.relu): with slim.arg_scope( [slim.fully_connected], biases_initializer=tf.constant_initializer(0.1), weights_initializer=trunc_normal(0.04), weights_regularizer=slim.l2_regularizer(weight_decay), activation_fn=tf.nn.relu) as sc: return sc
Example #23
Source File: 17_conv_mnist.py From deep-learning-note with MIT License | 5 votes |
def fully_connected(inputs, out_dim, scope_name='fc'): ''' A fully connected linear layer on inputs ''' with tf.compat.v1.variable_scope(scope_name, reuse=tf.compat.v1.AUTO_REUSE) as scope: in_dim = inputs.shape[-1] w = tf.compat.v1.get_variable('weights', [in_dim, out_dim], initializer=tf.truncated_normal_initializer()) b = tf.compat.v1.get_variable('biases', [out_dim], initializer=tf.constant_initializer(0.0)) out = tf.matmul(inputs, w) + b return out
Example #24
Source File: utils.py From HardRLWithYoutube with MIT License | 5 votes |
def lnlstm(xs, ms, s, scope, nh, init_scale=1.0): nbatch, nin = [v.value for v in xs[0].get_shape()] with tf.variable_scope(scope): wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(init_scale)) gx = tf.get_variable("gx", [nh*4], initializer=tf.constant_initializer(1.0)) bx = tf.get_variable("bx", [nh*4], initializer=tf.constant_initializer(0.0)) wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init(init_scale)) gh = tf.get_variable("gh", [nh*4], initializer=tf.constant_initializer(1.0)) bh = tf.get_variable("bh", [nh*4], initializer=tf.constant_initializer(0.0)) b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0)) gc = tf.get_variable("gc", [nh], initializer=tf.constant_initializer(1.0)) bc = tf.get_variable("bc", [nh], initializer=tf.constant_initializer(0.0)) c, h = tf.split(axis=1, num_or_size_splits=2, value=s) for idx, (x, m) in enumerate(zip(xs, ms)): c = c*(1-m) h = h*(1-m) z = _ln(tf.matmul(x, wx), gx, bx) + _ln(tf.matmul(h, wh), gh, bh) + b i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z) i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f) o = tf.nn.sigmoid(o) u = tf.tanh(u) c = f*c + i*u h = o*tf.tanh(_ln(c, gc, bc)) xs[idx] = h s = tf.concat(axis=1, values=[c, h]) return xs, s
Example #25
Source File: mpi_running_mean_std.py From HardRLWithYoutube with MIT License | 5 votes |
def __init__(self, epsilon=1e-2, shape=()): self._sum = tf.get_variable( dtype=tf.float64, shape=shape, initializer=tf.constant_initializer(0.0), name="runningsum", trainable=False) self._sumsq = tf.get_variable( dtype=tf.float64, shape=shape, initializer=tf.constant_initializer(epsilon), name="runningsumsq", trainable=False) self._count = tf.get_variable( dtype=tf.float64, shape=(), initializer=tf.constant_initializer(epsilon), name="count", trainable=False) self.shape = shape self.mean = tf.to_float(self._sum / self._count) self.std = tf.sqrt( tf.maximum( tf.to_float(self._sumsq / self._count) - tf.square(self.mean) , 1e-2 )) newsum = tf.placeholder(shape=self.shape, dtype=tf.float64, name='sum') newsumsq = tf.placeholder(shape=self.shape, dtype=tf.float64, name='var') newcount = tf.placeholder(shape=[], dtype=tf.float64, name='count') self.incfiltparams = U.function([newsum, newsumsq, newcount], [], updates=[tf.assign_add(self._sum, newsum), tf.assign_add(self._sumsq, newsumsq), tf.assign_add(self._count, newcount)])
Example #26
Source File: exporter_test.py From object_detector_app with MIT License | 5 votes |
def preprocess(self, inputs): return (tf.identity(inputs) * tf.get_variable('dummy', shape=(), initializer=tf.constant_initializer(2), dtype=tf.float32))
Example #27
Source File: mnist_inference.py From deep-learning-note with MIT License | 5 votes |
def inference(input_tensor, regularizer): # 声明第一层神经网络 with tf.variable_scope('layer1'): weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer) biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0)) layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases) # 声明第二层 with tf.variable_scope('layer2'): weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer) biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0)) layer2 = tf.matmul(layer1, weights) + biases return layer2
Example #28
Source File: model_train.py From ICDAR-2019-SROIE with MIT License | 5 votes |
def lstm_fc(net, input_channel, output_channel, scope_name): with tf.variable_scope(scope_name) as scope: shape = tf.shape(net) N, H, W, C = shape[0], shape[1], shape[2], shape[3] net = tf.reshape(net, [N * H * W, C]) init_weights = tf.contrib.layers.variance_scaling_initializer(factor=0.01, mode='FAN_AVG', uniform=False) init_biases = tf.constant_initializer(0.0) weights = make_var('weights', [input_channel, output_channel], init_weights) biases = make_var('biases', [output_channel], init_biases) output = tf.matmul(net, weights) + biases output = tf.reshape(output, [N, H, W, output_channel]) return output
Example #29
Source File: mpi_running_mean_std.py From lirpg with MIT License | 5 votes |
def __init__(self, epsilon=1e-2, shape=()): self._sum = tf.get_variable( dtype=tf.float64, shape=shape, initializer=tf.constant_initializer(0.0), name="runningsum", trainable=False) self._sumsq = tf.get_variable( dtype=tf.float64, shape=shape, initializer=tf.constant_initializer(epsilon), name="runningsumsq", trainable=False) self._count = tf.get_variable( dtype=tf.float64, shape=(), initializer=tf.constant_initializer(epsilon), name="count", trainable=False) self.shape = shape self.mean = tf.to_float(self._sum / self._count) self.std = tf.sqrt( tf.maximum( tf.to_float(self._sumsq / self._count) - tf.square(self.mean) , 1e-2 )) newsum = tf.placeholder(shape=self.shape, dtype=tf.float64, name='sum') newsumsq = tf.placeholder(shape=self.shape, dtype=tf.float64, name='var') newcount = tf.placeholder(shape=[], dtype=tf.float64, name='count') self.incfiltparams = U.function([newsum, newsumsq, newcount], [], updates=[tf.assign_add(self._sum, newsum), tf.assign_add(self._sumsq, newsumsq), tf.assign_add(self._count, newcount)])
Example #30
Source File: alexnet.py From DeepLab_v3 with MIT License | 5 votes |
def alexnet_v2_arg_scope(weight_decay=0.0005): with slim.arg_scope([slim.conv2d, slim.fully_connected], activation_fn=tf.nn.relu, biases_initializer=tf.constant_initializer(0.1), weights_regularizer=slim.l2_regularizer(weight_decay)): with slim.arg_scope([slim.conv2d], padding='SAME'): with slim.arg_scope([slim.max_pool2d], padding='VALID') as arg_sc: return arg_sc