Python tensorflow.histogram_summary() Examples
The following are 30
code examples of tensorflow.histogram_summary().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: model.py From web_page_classification with MIT License | 6 votes |
def _activation_summary(self, x): """Helper to create summaries for activations. Creates a summary that provides a histogram of activations. Creates a summary that measure the sparsity of activations. Args: x: Tensor Returns: nothing """ # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training # session. This helps the clarity of presentation on tensorboard. # Error: these summaries cause high classifier error!!! # All inputs to node MergeSummary/MergeSummary must be from the same frame. # tensor_name = re.sub('%s_[0-9]*/' % "tower", '', x.op.name) # tf.histogram_summary(tensor_name + '/activations', x) # tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
Example #2
Source File: model_deploy.py From shuttleNet with GNU General Public License v3.0 | 6 votes |
def _add_gradients_summaries(grads_and_vars): """Add histogram summaries to gradients. Note: The summaries are also added to the SUMMARIES collection. Args: grads_and_vars: A list of gradient to variable pairs (tuples). Returns: The _list_ of the added summaries for grads_and_vars. """ summaries = [] for grad, var in grads_and_vars: if grad is not None: if isinstance(grad, tf.IndexedSlices): grad_values = grad.values else: grad_values = grad summaries.append(tf.histogram_summary(var.op.name + ':gradient', grad_values)) summaries.append(tf.histogram_summary(var.op.name + ':gradient_norm', tf.global_norm([grad_values]))) else: tf.logging.info('Var %s has no gradient', var.op.name) return summaries
Example #3
Source File: tf_networks.py From learn_prox_ops with GNU General Public License v3.0 | 6 votes |
def init_summaries(self): """ Initialize summaries for TensorBoard. """ # train # for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES): # tf.histogram_summary(v.name, v, collections=['train'], name='variables') tf.summary.scalar('LOSS/batch_train_loss', self.loss, collections=['train']) if hasattr(self, 'learning_rate'): tf.summary.scalar('learning_rate', self.learning_rate, collections=['train']) # test for v in tf.get_collection('moving_avgs'): tf.summary.histogram(v.name, v, collections=['test'], name='moving_avgs') # images nb_imgs = 3 tf.summary.image('data', self.data, max_outputs=nb_imgs, collections=['images']) tf.summary.image('output', self.output_clipped, max_outputs=nb_imgs, collections=['images']) tf.summary.image('label', self.labels, max_outputs=nb_imgs, collections=['images'])
Example #4
Source File: tfbasemodel.py From Supply-demand-forecasting with MIT License | 6 votes |
def nn_layer_(self,input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu): """Reusable code for making a simple neural net layer. It does a matrix multiply, bias add, and then uses relu to nonlinearize. It also sets up name scoping so that the resultant graph is easy to read, and adds a number of summary ops. """ # Adding a name scope ensures logical grouping of the layers in the graph. with tf.name_scope(layer_name): with tf.name_scope('weights'): weights = self.weight_variable([input_dim, output_dim]) self.variable_summaries(weights, layer_name + '/weights') with tf.name_scope('biases'): biases = self.bias_variable([output_dim]) self.variable_summaries(biases, layer_name + '/biases') with tf.name_scope('Wx_plus_b'): preactivate = tf.matmul(input_tensor, weights) + biases tf.histogram_summary(layer_name + '/pre_activations', preactivate) activations = act(preactivate, 'activation') tf.histogram_summary(layer_name + '/activations', activations) return activations
Example #5
Source File: neural_network.py From sentiment-analysis-tensorflow with Apache License 2.0 | 6 votes |
def variable_summaries(var, name): """ Attach a lot of summaries to a Tensor for Tensorboard visualization. Ref: https://www.tensorflow.org/versions/r0.11/how_tos/summaries_and_tensorboard/index.html :param var: Variable to summarize :param name: Summary name """ with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.scalar_summary('mean/' + name, mean) with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.scalar_summary('stddev/' + name, stddev) tf.scalar_summary('max/' + name, tf.reduce_max(var)) tf.scalar_summary('min/' + name, tf.reduce_min(var)) tf.histogram_summary(name, var)
Example #6
Source File: cifar10.py From deep_image_model with Apache License 2.0 | 6 votes |
def _activation_summary(x): """Helper to create summaries for activations. Creates a summary that provides a histogram of activations. Creates a summary that measures the sparsity of activations. Args: x: Tensor Returns: nothing """ # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training # session. This helps the clarity of presentation on tensorboard. tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name) tf.histogram_summary(tensor_name + '/activations', x) tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
Example #7
Source File: LSPModels.py From deeppose with GNU General Public License v3.0 | 6 votes |
def _activation_summary(x): """Helper to create summaries for activations. Creates a summary that provides a histogram of activations. Creates a summary that measure the sparsity of activations. Args: x: Tensor Returns: nothing """ # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training # session. This helps the clarity of presentation on tensorboard. tensor_name = re.sub('%s_[0-9]*/' % LSPGlobals.TOWER_NAME, '', x.op.name) tf.histogram_summary(tensor_name + '/activations', x) tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
Example #8
Source File: convNet.py From adascan-public with GNU General Public License v3.0 | 6 votes |
def fc_layer(self, bottom, name): with tf.variable_scope(name) as scope: shape = bottom.get_shape().as_list() dim = 1 for d in shape[1:]: dim *= d x = tf.reshape(bottom, [-1, dim]) with tf.device('/cpu:0'): weights = self.get_fc_weight(name) biases = self.get_fc_bias(name) # Fully connected layer. Note that the '+' operation automatically # broadcasts the biases. fc = tf.nn.bias_add(tf.matmul(x, weights), biases) #tf.histogram_summary('adascan/'+name+'_activations', fc) #tf.histogram_summary('adascan/'+name+'_weights', weights) scope.reuse_variables() return fc
Example #9
Source File: model_deploy.py From Action_Recognition_Zoo with MIT License | 6 votes |
def _add_gradients_summaries(grads_and_vars): """Add histogram summaries to gradients. Note: The summaries are also added to the SUMMARIES collection. Args: grads_and_vars: A list of gradient to variable pairs (tuples). Returns: The _list_ of the added summaries for grads_and_vars. """ summaries = [] for grad, var in grads_and_vars: if grad is not None: if isinstance(grad, tf.IndexedSlices): grad_values = grad.values else: grad_values = grad summaries.append(tf.histogram_summary(var.op.name + ':gradient', grad_values)) summaries.append(tf.histogram_summary(var.op.name + ':gradient_norm', tf.global_norm([grad_values]))) else: tf.logging.info('Var %s has no gradient', var.op.name) return summaries
Example #10
Source File: mnist_with_summary.py From MachineLearning with Apache License 2.0 | 6 votes |
def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu): """Reusable code for making a simple neural net layer. It does a matrix multiply, bias add, and then uses relu to nonlinearize. It also sets up name scoping so that the resultant graph is easy to read, and adds a number of summary ops. """ # Adding a name scope ensures logical grouping of the layers in the graph. with tf.name_scope(layer_name): # This Variable will hold the state of the weights for the layer with tf.name_scope('weights'): weights = weight_variable([input_dim, output_dim]) variable_summaries(weights, layer_name + '/weights') with tf.name_scope('biases'): biases = bias_variable([output_dim]) variable_summaries(biases, layer_name + '/biases') with tf.name_scope('Wx_plus_b'): preactivate = tf.matmul(input_tensor, weights) + biases tf.histogram_summary(layer_name + '/pre_activations', preactivate) activations = act(preactivate, 'activation') tf.histogram_summary(layer_name + '/activations', activations) return activations
Example #11
Source File: ranknet.py From tfranknet with GNU General Public License v2.0 | 6 votes |
def _setup_training(self): """ Set up a data flow graph for fine tuning """ layer_num = self.layer_num act_func = ACTIVATE_FUNC[self.activate_func] sigma = self.sigma lr = self.learning_rate weights = self.weights biases = self.biases data1, data2 = self.data1, self.data2 batch_size = self.batch_size optimizer = OPTIMIZER[self.optimizer] with tf.name_scope("training"): s1 = self._obtain_score(data1, weights, biases, act_func, "1") s2 = self._obtain_score(data2, weights, biases, act_func, "2") with tf.name_scope("cost"): sum_cost = tf.reduce_sum(tf.log(1 + tf.exp(-sigma*(s1-s2)))) self.cost = cost = sum_cost / batch_size self.optimize = optimizer(lr).minimize(cost) for n in range(layer_num-1): tf.histogram_summary("weight"+str(n), weights[n]) tf.histogram_summary("bias"+str(n), biases[n]) tf.scalar_summary("cost", cost)
Example #12
Source File: cifar10.py From ml with Apache License 2.0 | 6 votes |
def _activation_summary(x): """Helper to create summaries for activations. Creates a summary that provides a histogram of activations. Creates a summary that measure the sparsity of activations. Args: x: Tensor Returns: nothing """ # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training # session. This helps the clarity of presentation on tensorboard. tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name) # tf.histogram_summary(tensor_name + '/activations', x) tf.summary.histogram(tensor_name + '/activations', x) # tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x)) tf.summary.scalar(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
Example #13
Source File: cifar10.py From ml with Apache License 2.0 | 6 votes |
def _activation_summary(x): """Helper to create summaries for activations. Creates a summary that provides a histogram of activations. Creates a summary that measure the sparsity of activations. Args: x: Tensor Returns: nothing """ # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training # session. This helps the clarity of presentation on tensorboard. tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name) # tf.histogram_summary(tensor_name + '/activations', x) tf.summary.histogram(tensor_name + '/activations', x) # tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x)) tf.summary.scalar(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
Example #14
Source File: trainer.py From StackGAN with MIT License | 6 votes |
def define_summaries(self): '''Helper function for init_opt''' all_sum = {'g': [], 'd': [], 'hr_g': [], 'hr_d': [], 'hist': []} for k, v in self.log_vars: if k.startswith('g'): all_sum['g'].append(tf.scalar_summary(k, v)) elif k.startswith('d'): all_sum['d'].append(tf.scalar_summary(k, v)) elif k.startswith('hr_g'): all_sum['hr_g'].append(tf.scalar_summary(k, v)) elif k.startswith('hr_d'): all_sum['hr_d'].append(tf.scalar_summary(k, v)) elif k.startswith('hist'): all_sum['hist'].append(tf.histogram_summary(k, v)) self.g_sum = tf.merge_summary(all_sum['g']) self.d_sum = tf.merge_summary(all_sum['d']) self.hr_g_sum = tf.merge_summary(all_sum['hr_g']) self.hr_d_sum = tf.merge_summary(all_sum['hr_d']) self.hist_sum = tf.merge_summary(all_sum['hist'])
Example #15
Source File: clock_model.py From deep-time-reading with MIT License | 6 votes |
def _activation_summary(x): """Helper to create summaries for activations. Creates a summary that provides a histogram of activations. Creates a summary that measure the sparsity of activations. Args: x: Tensor Returns: nothing """ # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training # session. This helps the clarity of presentation on tensorboard. tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name) tf.histogram_summary(tensor_name + '/activations', x) tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
Example #16
Source File: model_deploy.py From ECO-pytorch with BSD 2-Clause "Simplified" License | 6 votes |
def _add_gradients_summaries(grads_and_vars): """Add histogram summaries to gradients. Note: The summaries are also added to the SUMMARIES collection. Args: grads_and_vars: A list of gradient to variable pairs (tuples). Returns: The _list_ of the added summaries for grads_and_vars. """ summaries = [] for grad, var in grads_and_vars: if grad is not None: if isinstance(grad, tf.IndexedSlices): grad_values = grad.values else: grad_values = grad summaries.append(tf.histogram_summary(var.op.name + ':gradient', grad_values)) summaries.append(tf.histogram_summary(var.op.name + ':gradient_norm', tf.global_norm([grad_values]))) else: tf.logging.info('Var %s has no gradient', var.op.name) return summaries
Example #17
Source File: deeplab_v3plus_model.py From SketchySceneColorization with MIT License | 5 votes |
def _decay(self): """L2 weight decay loss.""" costs = [] for var in tf.trainable_variables(): if var.op.name.find(r'weights') > 0: costs.append(tf.nn.l2_loss(var)) # tf.histogram_summary(var.op.name, var) return tf.multiply(self.weight_decay_rate, tf.add_n(costs))
Example #18
Source File: train_image_classifier.py From Action_Recognition_Zoo with MIT License | 5 votes |
def _add_variables_summaries(learning_rate): summaries = [] for variable in slim.get_model_variables(): summaries.append(tf.histogram_summary(variable.op.name, variable)) summaries.append(tf.scalar_summary('training/Learning Rate', learning_rate)) return summaries
Example #19
Source File: resnet_model_basic.py From DualLearning with MIT License | 5 votes |
def GetWeightDecay(self): """L2 weight decay loss.""" costs = [] for var in self.trainable_variables: if var.op.name.find(r'DW') > 0: costs.append(tf.nn.l2_loss(var)) # tf.histogram_summary(var.op.name, var) return tf.mul(self.hps.weight_decay_rate, tf.add_n(costs))
Example #20
Source File: resnet_model.py From Action_Recognition_Zoo with MIT License | 5 votes |
def _decay(self): """L2 weight decay loss.""" costs = [] for var in tf.trainable_variables(): if var.op.name.find(r'DW') > 0: costs.append(tf.nn.l2_loss(var)) # tf.histogram_summary(var.op.name, var) return tf.mul(self.hps.weight_decay_rate, tf.add_n(costs))
Example #21
Source File: model.py From personalized-dialog with MIT License | 5 votes |
def _init_summaries(self): self.accuracy = tf.placeholder_with_default(0.0, shape=(), name='Accuracy') self.accuracy_summary = tf.scalar_summary('Accuracy summary', self.accuracy) self.f_pos_summary = tf.histogram_summary('f_pos', self.f_pos) self.f_neg_summary = tf.histogram_summary('f_neg', self.f_neg) self.loss_summary = tf.scalar_summary('Mini-batch loss', self.loss) self.summary_op = tf.merge_summary( [ self.f_pos_summary, self.f_neg_summary, self.loss_summary ] )
Example #22
Source File: resnet_model_basic.py From DualLearning with MIT License | 5 votes |
def _decay(self): """L2 weight decay loss.""" costs = [] for var in tf.trainable_variables(): if var.op.name.find(r'DW') > 0: costs.append(tf.nn.l2_loss(var)) # tf.histogram_summary(var.op.name, var) return tf.multiply(self.hps.weight_decay_rate, tf.add_n(costs))
Example #23
Source File: segnet_model.py From SketchySceneColorization with MIT License | 5 votes |
def _decay(self): """L2 weight decay loss.""" costs = [] for var in tf.trainable_variables(): if var.op.name.find(r'DW') > 0: costs.append(tf.nn.l2_loss(var)) # tf.histogram_summary(var.op.name, var) return tf.multiply(self.weight_decay_rate, tf.add_n(costs))
Example #24
Source File: fcn8s_model.py From SketchySceneColorization with MIT License | 5 votes |
def _decay(self): """L2 weight decay loss.""" costs = [] for var in tf.trainable_variables(): if var.op.name.find(r'DW') > 0: costs.append(tf.nn.l2_loss(var)) # tf.histogram_summary(var.op.name, var) return tf.multiply(self.weight_decay_rate, tf.add_n(costs))
Example #25
Source File: deeplab_model.py From SketchySceneColorization with MIT License | 5 votes |
def _decay(self): """L2 weight decay loss.""" costs = [] for var in tf.trainable_variables(): if var.op.name.find(r'DW') > 0: costs.append(tf.nn.l2_loss(var)) # tf.histogram_summary(var.op.name, var) return tf.multiply(self.weight_decay_rate, tf.add_n(costs))
Example #26
Source File: TensorflowUtils_plus.py From AutoPortraitMatting with Apache License 2.0 | 5 votes |
def add_activation_summary(var): if var is not None: tf.histogram_summary(var.op.name + "/activation", var) tf.scalar_summary(var.op.name + "/sparsity", tf.nn.zero_fraction(var))
Example #27
Source File: retrain.py From Tensorflow_Object_Tracking_Video with MIT License | 5 votes |
def variable_summaries(var, name): """Attach a lot of summaries to a Tensor (for TensorBoard visualization).""" with tf.name_scope('summaries'): mean = tf.reduce_mean(var) scalar_summary('mean/' + name, mean) with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_sum(tf.square(var - mean))) scalar_summary('sttdev/' + name, stddev) scalar_summary('max/' + name, tf.reduce_max(var)) scalar_summary('min/' + name, tf.reduce_min(var)) if(int(tf.__version__.split(".")[0])<1): ### For tf v<1.0 tf.histogram_summary(name, var) else: ### For tf v>=1.0 tf.summary.histogram(name, var)
Example #28
Source File: q_network.py From agent-trainer with MIT License | 5 votes |
def _activation_summary(self, tensor): tensor_name = tensor.op.name tf.histogram_summary(tensor_name + '/activations', tensor) tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(tensor))
Example #29
Source File: utils.py From WassersteinGAN.tensorflow with MIT License | 5 votes |
def add_gradient_summary(grad, var): if grad is not None: tf.histogram_summary(var.op.name + "/gradient", grad)
Example #30
Source File: utils.py From WassersteinGAN.tensorflow with MIT License | 5 votes |
def add_activation_summary(var): tf.histogram_summary(var.op.name + "/activation", var) tf.scalar_summary(var.op.name + "/sparsity", tf.nn.zero_fraction(var))