Python tensorflow.reset_default_graph() Examples
The following are 30
code examples of tensorflow.reset_default_graph().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: mnist_tf_keras.py From deep_architect with MIT License | 6 votes |
def evaluate(self, inputs, outputs): tf.keras.backend.clear_session() tf.reset_default_graph() (x_train, y_train) = self.train_dataset X = tf.keras.layers.Input(x_train[0].shape) co.forward({inputs['in']: X}) logits = outputs['out'].val probs = tf.keras.layers.Softmax()(logits) model = tf.keras.models.Model(inputs=[inputs['in'].val], outputs=[probs]) optimizer = tf.keras.optimizers.Adam(lr=self.learning_rate) model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.summary() history = model.fit(x_train, y_train, batch_size=self.batch_size, epochs=self.max_num_training_epochs, validation_split=self.val_split) results = {'val_acc': history.history['val_acc'][-1]} return results
Example #2
Source File: inception_v3_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testUnknownImageShape(self): tf.reset_default_graph() batch_size = 2 height, width = 299, 299 num_classes = 1000 input_np = np.random.uniform(0, 1, (batch_size, height, width, 3)) with self.test_session() as sess: inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3)) logits, end_points = inception.inception_v3(inputs, num_classes) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Mixed_7c'] feed_dict = {inputs: input_np} tf.global_variables_initializer().run() pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict) self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 8, 2048])
Example #3
Source File: inception_v2_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testUnknownImageShape(self): tf.reset_default_graph() batch_size = 2 height, width = 224, 224 num_classes = 1000 input_np = np.random.uniform(0, 1, (batch_size, height, width, 3)) with self.test_session() as sess: inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3)) logits, end_points = inception.inception_v2(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV2/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Mixed_5c'] feed_dict = {inputs: input_np} tf.global_variables_initializer().run() pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict) self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])
Example #4
Source File: mobilenet_v1_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testUnknownImageShape(self): tf.reset_default_graph() batch_size = 2 height, width = 224, 224 num_classes = 1000 input_np = np.random.uniform(0, 1, (batch_size, height, width, 3)) with self.test_session() as sess: inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3)) logits, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes) self.assertTrue(logits.op.name.startswith('MobilenetV1/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Conv2d_13_pointwise'] feed_dict = {inputs: input_np} tf.global_variables_initializer().run() pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict) self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])
Example #5
Source File: inception_v1_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testUnknownImageShape(self): tf.reset_default_graph() batch_size = 2 height, width = 224, 224 num_classes = 1000 input_np = np.random.uniform(0, 1, (batch_size, height, width, 3)) with self.test_session() as sess: inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3)) logits, end_points = inception.inception_v1(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV1/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Mixed_5c'] feed_dict = {inputs: input_np} tf.global_variables_initializer().run() pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict) self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])
Example #6
Source File: test_model.py From models with MIT License | 6 votes |
def network_surgery(): tf.reset_default_graph() inputs = tf.placeholder(tf.float32, shape=(None, 131072, 4), name='inputs') targets = tf.placeholder(tf.float32, shape=(None, 1024, 4229), name='targets') targets_na = tf.placeholder(tf.bool, shape=(None, 1024), name="targets_na") preds_adhoc = tf.placeholder(tf.float32, shape=(None, 960, 4229), name="Placeholder_15") saver = tf.train.import_meta_graph("model_files/model.tf.meta", input_map={'Placeholder_15:0': preds_adhoc, 'Placeholder:0': targets_na, 'inputs:0': inputs, 'targets:0': targets }) ops = tf.get_default_graph().get_operations() out = tf.train.export_meta_graph(filename='model_files/model.tf-modified.meta', as_text=True) ops[:15]
Example #7
Source File: run_RingNet.py From RingNet with MIT License | 6 votes |
def predict_dict(self, images): """ Runs the model with images. """ images_ip = self.graph.get_tensor_by_name(u'input_images_1:0') params = self.graph.get_tensor_by_name(u'add_2:0') verts = self.graph.get_tensor_by_name(u'Flamenetnormal_2/Add_9:0') feed_dict = { images_ip: images, } fetch_dict = { 'vertices': verts, 'parameters': params, } results = self.sess.run(fetch_dict, feed_dict) tf.reset_default_graph() return results
Example #8
Source File: dcgan_test.py From DeepLab_v3 with MIT License | 6 votes |
def test_generator_graph(self): tf.set_random_seed(1234) # Check graph construction for a number of image size/depths and batch # sizes. for i, batch_size in zip(xrange(3, 7), xrange(3, 8)): tf.reset_default_graph() final_size = 2 ** i noise = tf.random_normal([batch_size, 64]) image, end_points = dcgan.generator( noise, depth=32, final_size=final_size) self.assertAllEqual([batch_size, final_size, final_size, 3], image.shape.as_list()) expected_names = ['deconv%i' % j for j in xrange(1, i)] + ['logits'] self.assertSetEqual(set(expected_names), set(end_points.keys())) # Check layer depths. for j in range(1, i): layer = end_points['deconv%i' % j] self.assertEqual(32 * 2**(i-j-1), layer.get_shape().as_list()[-1])
Example #9
Source File: dcgan_test.py From DeepLab_v3 with MIT License | 6 votes |
def test_discriminator_graph(self): # Check graph construction for a number of image size/depths and batch # sizes. for i, batch_size in zip(xrange(1, 6), xrange(3, 8)): tf.reset_default_graph() img_w = 2 ** i image = tf.random_uniform([batch_size, img_w, img_w, 3], -1, 1) output, end_points = dcgan.discriminator( image, depth=32) self.assertAllEqual([batch_size, 1], output.get_shape().as_list()) expected_names = ['conv%i' % j for j in xrange(1, i+1)] + ['logits'] self.assertSetEqual(set(expected_names), set(end_points.keys())) # Check layer depths. for j in range(1, i+1): layer = end_points['conv%i' % j] self.assertEqual(32 * 2**(j-1), layer.get_shape().as_list()[-1])
Example #10
Source File: mobilenet_v1_test.py From DeepLab_v3 with MIT License | 6 votes |
def testUnknownImageShape(self): tf.reset_default_graph() batch_size = 2 height, width = 224, 224 num_classes = 1000 input_np = np.random.uniform(0, 1, (batch_size, height, width, 3)) with self.test_session() as sess: inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3)) logits, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes) self.assertTrue(logits.op.name.startswith('MobilenetV1/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Conv2d_13_pointwise'] feed_dict = {inputs: input_np} tf.global_variables_initializer().run() pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict) self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])
Example #11
Source File: inception_v2_test.py From DeepLab_v3 with MIT License | 6 votes |
def testUnknownImageShape(self): tf.reset_default_graph() batch_size = 2 height, width = 224, 224 num_classes = 1000 input_np = np.random.uniform(0, 1, (batch_size, height, width, 3)) with self.test_session() as sess: inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3)) logits, end_points = inception.inception_v2(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV2/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Mixed_5c'] feed_dict = {inputs: input_np} tf.global_variables_initializer().run() pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict) self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])
Example #12
Source File: inception_v3_test.py From DeepLab_v3 with MIT License | 6 votes |
def testGlobalPoolUnknownImageShape(self): tf.reset_default_graph() batch_size = 1 height, width = 330, 400 num_classes = 1000 input_np = np.random.uniform(0, 1, (batch_size, height, width, 3)) with self.test_session() as sess: inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3)) logits, end_points = inception.inception_v3(inputs, num_classes, global_pool=True) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Mixed_7c'] feed_dict = {inputs: input_np} tf.global_variables_initializer().run() pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict) self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 11, 2048])
Example #13
Source File: inception_v1_test.py From DeepLab_v3 with MIT License | 6 votes |
def testUnknownImageShape(self): tf.reset_default_graph() batch_size = 2 height, width = 224, 224 num_classes = 1000 input_np = np.random.uniform(0, 1, (batch_size, height, width, 3)) with self.test_session() as sess: inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3)) logits, end_points = inception.inception_v1(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV1/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Mixed_5c'] feed_dict = {inputs: input_np} tf.global_variables_initializer().run() pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict) self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])
Example #14
Source File: test_method.py From mmvec with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_equalize_sv(self): np.random.seed(1) tf.reset_default_graph() tf.set_random_seed(0) latent_dim = 2 res_ranks, res_biplot = paired_omics( self.microbes, self.metabolites, epochs=1000, latent_dim=latent_dim, min_feature_count=1, learning_rate=0.1, equalize_biplot=True ) # make sure the biplot is of the correct dimensions npt.assert_allclose( res_biplot.samples.shape, np.array([self.microbes.shape[0], latent_dim])) npt.assert_allclose( res_biplot.features.shape, np.array([self.metabolites.shape[0], latent_dim])) # make sure that the biplot has the correct ordering self.assertGreater(res_biplot.proportion_explained[0], res_biplot.proportion_explained[1]) self.assertGreater(res_biplot.eigvals[0], res_biplot.eigvals[1])
Example #15
Source File: test_normal2dLikelihood.py From decompose with MIT License | 6 votes |
def test_residuals(device, dtype): npdtype = dtype.as_numpy_dtype M, K, tau = (20, 30), 3, 0.1 U = (tf.constant(np.random.normal(size=(K, M[0])).astype(npdtype)), tf.constant(np.random.normal(size=(K, M[1])).astype(npdtype))) noise = np.random.normal(size=M).astype(npdtype) data = tf.matmul(tf.transpose(U[0]), U[1]) + tf.constant(noise) lh = Normal2dLikelihood(M=M, K=K, tau=tau, dtype=dtype) lh.init(data=data) r = lh.residuals(U, data) assert(r.dtype == dtype) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) npr = sess.run(r) assert(np.allclose(noise.flatten(), npr, atol=1e-5, rtol=1e-5)) tf.reset_default_graph()
Example #16
Source File: inception_v2_test.py From DeepLab_v3 with MIT License | 6 votes |
def testGlobalPoolUnknownImageShape(self): tf.reset_default_graph() batch_size = 1 height, width = 250, 300 num_classes = 1000 input_np = np.random.uniform(0, 1, (batch_size, height, width, 3)) with self.test_session() as sess: inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3)) logits, end_points = inception.inception_v2(inputs, num_classes, global_pool=True) self.assertTrue(logits.op.name.startswith('InceptionV2/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Mixed_5c'] feed_dict = {inputs: input_np} tf.global_variables_initializer().run() pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict) self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 10, 1024])
Example #17
Source File: test_normal2dLikelihood.py From decompose with MIT License | 6 votes |
def test_loss(device, dtype): npdtype = dtype.as_numpy_dtype M, K, tau = (20, 30), 3, 0.1 U = (tf.constant(np.random.normal(size=(K, M[0])).astype(npdtype)), tf.constant(np.random.normal(size=(K, M[1])).astype(npdtype))) noise = np.random.normal(size=M).astype(npdtype) data = tf.matmul(tf.transpose(U[0]), U[1]) + tf.constant(noise) lh = Normal2dLikelihood(M=M, K=K, tau=tau, dtype=dtype) lh.init(data=data) loss = lh.loss(U, data) assert(loss.dtype == dtype) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) nploss = sess.run(loss) assert(np.allclose(np.sum(noise**2), nploss, atol=1e-5, rtol=1e-5)) tf.reset_default_graph()
Example #18
Source File: test_normal2dLikelihood.py From decompose with MIT License | 6 votes |
def test_llh(device, dtype): npdtype = dtype.as_numpy_dtype M, K, tau = (20, 30), 3, 0.1 U = (tf.constant(np.random.normal(size=(K, M[0])).astype(npdtype)), tf.constant(np.random.normal(size=(K, M[1])).astype(npdtype))) noise = np.random.normal(size=M).astype(npdtype) data = tf.matmul(tf.transpose(U[0]), U[1]) + tf.constant(noise) lh = Normal2dLikelihood(M=M, K=K, tau=tau, dtype=dtype) lh.init(data=data) llh = lh.llh(U, data) assert(llh.dtype == dtype) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) npllh = sess.run(llh) llhgt = np.sum(sp.stats.norm(loc=0., scale=1./np.sqrt(tau)).logpdf(noise)) assert(np.allclose(llhgt, npllh, atol=1e-5, rtol=1e-5)) tf.reset_default_graph()
Example #19
Source File: test_normal2dLikelihood.py From decompose with MIT License | 6 votes |
def test_update(device, f, updateType, dtype): npdtype = dtype.as_numpy_dtype M, K, tau = (20, 30), 3, 0.1 npU = (np.random.normal(size=(K, M[0])).astype(npdtype), np.random.normal(size=(K, M[1])).astype(npdtype)) U = (tf.constant(npU[0]), tf.constant(npU[1])) npnoise = np.random.normal(size=M).astype(npdtype) npdata = np.dot(npU[0].T, npU[1]) + npnoise data = tf.constant(npdata, dtype=dtype) lh = Normal2dLikelihood(M=M, K=K, tau=tau, updateType=updateType) lh.init(data=data) lh.noiseDistribution.update = MagicMock() residuals = tf.ones_like(data) lh.residuals = MagicMock(return_value=residuals) lh.update(U, data) if updateType == UpdateType.ALL: lh.residuals.assert_called_once() lh.noiseDistribution.update.assert_called_once() else: lh.residuals.assert_not_called() lh.noiseDistribution.update.assert_not_called() tf.reset_default_graph()
Example #20
Source File: parallel_model.py From dataiku-contrib with Apache License 2.0 | 6 votes |
def build_model(x_train, num_classes): # Reset default graph. Keras leaves old ops in the graph, # which are ignored for execution but clutter graph # visualization in TensorBoard. tf.reset_default_graph() inputs = KL.Input(shape=x_train.shape[1:], name="input_image") x = KL.Conv2D(32, (3, 3), activation='relu', padding="same", name="conv1")(inputs) x = KL.Conv2D(64, (3, 3), activation='relu', padding="same", name="conv2")(x) x = KL.MaxPooling2D(pool_size=(2, 2), name="pool1")(x) x = KL.Flatten(name="flat1")(x) x = KL.Dense(128, activation='relu', name="dense1")(x) x = KL.Dense(num_classes, activation='softmax', name="dense2")(x) return KM.Model(inputs, x, "digit_classifier_model") # Load MNIST Data
Example #21
Source File: inception_v3_test.py From DeepLab_v3 with MIT License | 6 votes |
def testUnknownImageShape(self): tf.reset_default_graph() batch_size = 2 height, width = 299, 299 num_classes = 1000 input_np = np.random.uniform(0, 1, (batch_size, height, width, 3)) with self.test_session() as sess: inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3)) logits, end_points = inception.inception_v3(inputs, num_classes) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Mixed_7c'] feed_dict = {inputs: input_np} tf.global_variables_initializer().run() pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict) self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 8, 2048])
Example #22
Source File: save_image.py From ppo-lstm-parallel with MIT License | 5 votes |
def start(env): env = gym.make(env) frames = [] MASTER_NAME = "master-0" IMAGE_PATH = "images/%s.gif" % env.spec.id tf.reset_default_graph() with tf.Session() as session: with tf.variable_scope(MASTER_NAME) as scope: env_opts = environments.get_env_options(env, False) policy = get_policy(env_opts, session) master_agent = PPOAgent(policy, session, MASTER_NAME, env_opts) saver = tf.train.Saver(max_to_keep=1) saver = tf.train.import_meta_graph(tf.train.latest_checkpoint("models/%s/" % env.spec.id) + ".meta") saver.restore(session, tf.train.latest_checkpoint("models/%s/" % env.spec.id)) try: pass except: print("Failed to restore model, starting from scratch") session.run(tf.global_variables_initializer()) global_step = 0 while global_step < 1000: terminal = False s0 = env.reset() cum_rew = 0 cur_hidden_state = master_agent.get_init_hidden_state() episode_count = 0 while not terminal: episode_count += 1 frames.append(env.render(mode='rgb_array')) action, h_out = master_agent.get_strict_sample(s0, cur_hidden_state) cur_hidden_state = h_out s0, r, terminal, _ = env.step(action) cum_rew += r global_step += 1 print(episode_count, cum_rew) imageio.mimsave(IMAGE_PATH, frames, duration=1.0 / 60.0)
Example #23
Source File: cartpole_a3c.py From reinforcement_learning with MIT License | 5 votes |
def main(): '''Example of A3C running on Cartpole environment''' tf.reset_default_graph() history = [] with tf.device('/{}:0'.format(DEVICE)): sess = tf.Session() global_model = ac_net.AC_Net( STATE_SIZE, ACTION_SIZE, LEARNING_RATE, 'global', n_h1=N_H1, n_h2=N_H2) workers = [] for i in xrange(NUM_WORKERS): env = gym.make('CartPole-v0') env._max_episode_steps = 200 workers.append(worker.Worker(env, state_size=STATE_SIZE, action_size=ACTION_SIZE, worker_name='worker_{}'.format(i), global_name='global', lr=LEARNING_RATE, gamma=GAMMA, t_max=T_MAX, sess=sess, history=history, n_h1=N_H1, n_h2=N_H2, logdir=LOG_DIR)) sess.run(tf.global_variables_initializer()) for workeri in workers: worker_work = lambda: workeri.work(NUM_EPISODES) thread = threading.Thread(target=worker_work) thread.start()
Example #24
Source File: play.py From ppo-lstm-parallel with MIT License | 5 votes |
def start(env): MASTER_NAME = "master-0" tf.reset_default_graph() with tf.Session() as session: with tf.variable_scope(MASTER_NAME) as scope: env_opts = environments.get_env_options(env, False) policy = get_policy(env_opts, session) master_agent = PPOAgent(policy, session, MASTER_NAME, env_opts) saver = tf.train.Saver(max_to_keep=1) saver = tf.train.import_meta_graph(tf.train.latest_checkpoint("models/%s/" % env) + ".meta") saver.restore(session, tf.train.latest_checkpoint("models/%s/" % env)) try: pass except: print("Failed to restore model, starting from scratch") session.run(tf.global_variables_initializer()) producer = environments.EnvironmentProducer(env, False) env = producer.get_new_environment() episode_count = 0 cum_rew = 0 while True: terminal = False s0 = env.reset() cur_hidden_state = master_agent.get_init_hidden_state() episode_count += 1 cur_rew = 0 while not terminal: env.render() action, h_out = master_agent.get_strict_sample(s0, cur_hidden_state) cur_hidden_state = h_out s0, r, terminal, _ = env.step(action) cum_rew += r cur_rew += r print("Ep: %s, cur_reward: %s reward: %s" % (episode_count, cur_rew, cum_rew / episode_count))
Example #25
Source File: tensorflow_cnn_from_scratch.py From kaggle-code with MIT License | 5 votes |
def reset_graph(seed=42): tf.reset_default_graph() tf.set_random_seed(seed) np.random.seed(seed)
Example #26
Source File: tf_nn_classification_bad.py From kaggle-code with MIT License | 5 votes |
def reset_graph(seed=42): tf.reset_default_graph() tf.set_random_seed(seed) np.random.seed(seed)
Example #27
Source File: insurance_tf_nn_classification_upsample.py From kaggle-code with MIT License | 5 votes |
def reset_graph(seed=42): tf.reset_default_graph() tf.set_random_seed(seed) np.random.seed(seed)
Example #28
Source File: insurance_tf_nn_classification_downsample.py From kaggle-code with MIT License | 5 votes |
def reset_graph(seed=42): tf.reset_default_graph() tf.set_random_seed(seed) np.random.seed(seed)
Example #29
Source File: embeddings_formatter.py From embeddingsviz with MIT License | 5 votes |
def add_multiple_embeddings(log_dir, file_list, name_list): """ Creates the files necessary for the multiple embeddings :param log_dir: destination directory for the model and metadata (the one to which TensorBoard points) :param file_list: list of embeddings files :param name_list: names of the embeddings files :return: """ # setup a TensorFlow session tf.reset_default_graph() sess = tf.InteractiveSession() sess.run(tf.global_variables_initializer()) config = projector.ProjectorConfig() for i, file in enumerate(file_list): tensor_name = name_list[i] print('creating the embedding with the name ' + tensor_name) create_embeddings(sess, log_dir, embedding_file=file, tensor_name=tensor_name) # create a TensorFlow summary writer summary_writer = tf.summary.FileWriter(log_dir, sess.graph) embedding_conf = config.embeddings.add() embedding_conf.tensor_name = tensor_name + ':0' embedding_conf.metadata_path = os.path.join(tensor_name + '_' + 'metadata.tsv') projector.visualize_embeddings(summary_writer, config) # save the model saver = tf.train.Saver() saver.save(sess, os.path.join(log_dir, tensor_name + '_' + "model.ckpt")) print('finished successfully!')
Example #30
Source File: tf_nn_classification.py From kaggle-code with MIT License | 5 votes |
def reset_graph(seed=42): tf.reset_default_graph() tf.set_random_seed(seed) np.random.seed(seed)