Python tensorflow.GPUOptions() Examples
The following are 30
code examples of tensorflow.GPUOptions().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: runner.py From lambda-deep-learning-demo with Apache License 2.0 | 7 votes |
def create_session_config(self): """create session_config """ gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.95, allow_growth=True) # set number of GPU devices device_count = {"GPU": self.config.gpu_count} session_config = tf.ConfigProto( allow_soft_placement=True, log_device_placement=False, device_count=device_count, gpu_options=gpu_options) return session_config
Example #2
Source File: baseline.py From CCKS2019-IPRE with Apache License 2.0 | 6 votes |
def main(_): if FLAGS.mode == 'prepare': print('Prepare files') create_wordVec(FLAGS) create_serial(FLAGS) else: tf.reset_default_graph() print('build model') gpu_options = tf.GPUOptions(visible_device_list=FLAGS.cuda, allow_growth=True) with tf.Graph().as_default(): set_seed() sess = tf.Session( config=tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True, intra_op_parallelism_threads=int(multiprocessing.cpu_count() / 2), inter_op_parallelism_threads=int(multiprocessing.cpu_count() / 2))) with sess.as_default(): initializer = tf.contrib.layers.xavier_initializer() with tf.variable_scope('', initializer=initializer): model = Baseline(FLAGS) sess.run(tf.global_variables_initializer()) saver = tf.train.Saver(max_to_keep=None) model.run_model(sess, saver)
Example #3
Source File: trainer_lib.py From fine-lm with MIT License | 6 votes |
def create_session_config(log_device_placement=False, enable_graph_rewriter=False, gpu_mem_fraction=0.95, use_tpu=False, inter_op_parallelism_threads=0, intra_op_parallelism_threads=0): """The TensorFlow Session config to use.""" if use_tpu: graph_options = tf.GraphOptions() else: if enable_graph_rewriter: rewrite_options = rewriter_config_pb2.RewriterConfig() rewrite_options.layout_optimizer = rewriter_config_pb2.RewriterConfig.ON graph_options = tf.GraphOptions(rewrite_options=rewrite_options) else: graph_options = tf.GraphOptions( optimizer_options=tf.OptimizerOptions( opt_level=tf.OptimizerOptions.L1, do_function_inlining=False)) gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_mem_fraction) config = tf.ConfigProto( allow_soft_placement=True, graph_options=graph_options, gpu_options=gpu_options, log_device_placement=log_device_placement, inter_op_parallelism_threads=inter_op_parallelism_threads, intra_op_parallelism_threads=intra_op_parallelism_threads) return config
Example #4
Source File: head_pose_estimation.py From pyERA with MIT License | 6 votes |
def load_yaw_variables(self, YawFilePath): """ Load varibles from a checkpoint file @param YawFilePath Path to a valid checkpoint """ #It is possible to use the checkpoint file #y_ckpt = tf.train.get_checkpoint_state(YawFilePath) #.restore(self._sess, y_ckpt.model_checkpoint_path) #For future use, allocating a fraction of the GPU #gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.5) #Allocate only half of the GPU memory if(os.path.isfile(YawFilePath)==False): raise ValueError('[DEEPGAZE] CnnHeadPoseEstimator: the yaw file path is incorrect.') tf.train.Saver(({"conv1_yaw_w": self.hy_conv1_weights, "conv1_yaw_b": self.hy_conv1_biases, "conv2_yaw_w": self.hy_conv2_weights, "conv2_yaw_b": self.hy_conv2_biases, "conv3_yaw_w": self.hy_conv3_weights, "conv3_yaw_b": self.hy_conv3_biases, "dense1_yaw_w": self.hy_dense1_weights, "dense1_yaw_b": self.hy_dense1_biases, "out_yaw_w": self.hy_out_weights, "out_yaw_b": self.hy_out_biases })).restore(self._sess, YawFilePath)
Example #5
Source File: train.py From Counterfactual-StoryRW with MIT License | 6 votes |
def _get_run_config(config): gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=\ config['per_process_gpu_memory_fraction'], allow_growth=config['gpu_allow_growth']) sess_config = tf.ConfigProto( gpu_options=gpu_options, log_device_placement=config['log_device_placement']) run_config = tf.estimator.RunConfig( model_dir=config['model_dir'], tf_random_seed=config['tf_random_seed'], save_summary_steps=config['save_summary_steps'], save_checkpoints_steps=config['save_checkpoints_steps'], save_checkpoints_secs=config['save_checkpoints_secs'], keep_checkpoint_max=config['keep_checkpoint_max'], keep_checkpoint_every_n_hours=config['keep_checkpoint_every_n_hours'], log_step_count_steps=config['log_step_count_steps'], session_config=sess_config) return run_config
Example #6
Source File: run_dqn_atari.py From rl_algorithms with MIT License | 6 votes |
def get_session(): tf.reset_default_graph() tf_config = tf.ConfigProto( inter_op_parallelism_threads=1, intra_op_parallelism_threads=1) # This was the default provided in the starter code. #session = tf.Session(config=tf_config) # Use this if I want to see what is on the GPU. #session = tf.Session(config=tf.ConfigProto(log_device_placement=True)) # Use this for limiting memory allocated for the GPU. gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.5) session = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) print("AVAILABLE GPUS: ", get_available_gpus()) return session
Example #7
Source File: train_ensemble.py From youtube-8m with Apache License 2.0 | 6 votes |
def __init__(self, cluster, task, train_dir, log_device_placement=True): """"Creates a Trainer. Args: cluster: A tf.train.ClusterSpec if the execution is distributed. None otherwise. task: A TaskSpec describing the job type and the task index. """ self.cluster = cluster self.task = task self.is_master = (task.type == "master" and task.index == 0) self.train_dir = train_dir gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=FLAGS.gpu) self.config = tf.ConfigProto(log_device_placement=log_device_placement) if self.is_master and self.task.index > 0: raise StandardError("%s: Only one replica of master expected", task_as_string(self.task))
Example #8
Source File: train_embedding.py From youtube-8m with Apache License 2.0 | 6 votes |
def __init__(self, cluster, task, train_dir, log_device_placement=True): """"Creates a Trainer. Args: cluster: A tf.train.ClusterSpec if the execution is distributed. None otherwise. task: A TaskSpec describing the job type and the task index. """ self.cluster = cluster self.task = task self.is_master = (task.type == "master" and task.index == 0) self.train_dir = train_dir gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.2) self.config = tf.ConfigProto(log_device_placement=log_device_placement,gpu_options=gpu_options) if self.is_master and self.task.index > 0: raise StandardError("%s: Only one replica of master expected", task_as_string(self.task))
Example #9
Source File: train.py From youtube-8m with Apache License 2.0 | 6 votes |
def __init__(self, cluster, task, train_dir, log_device_placement=True): """"Creates a Trainer. Args: cluster: A tf.train.ClusterSpec if the execution is distributed. None otherwise. task: A TaskSpec describing the job type and the task index. """ self.cluster = cluster self.task = task self.is_master = (task.type == "master" and task.index == 0) self.train_dir = train_dir gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=FLAGS.gpu) self.config = tf.ConfigProto(log_device_placement=log_device_placement) if self.is_master and self.task.index > 0: raise StandardError("%s: Only one replica of master expected", task_as_string(self.task))
Example #10
Source File: detector.py From Gather-Deployment with MIT License | 6 votes |
def __init__(self, net_factory, data_size, batch_size, model_path): graph = tf.Graph() with graph.as_default(): self.image_op = tf.placeholder(tf.float32, shape=[batch_size, data_size, data_size, 3], name='input_image') #figure out landmark self.cls_prob, self.bbox_pred, self.landmark_pred = net_factory(self.image_op, training=False) self.sess = tf.Session( config=tf.ConfigProto(allow_soft_placement=True, gpu_options=tf.GPUOptions(allow_growth=True))) saver = tf.train.Saver() #check whether the dictionary is valid model_dict = '/'.join(model_path.split('/')[:-1]) ckpt = tf.train.get_checkpoint_state(model_dict) print(model_path) readstate = ckpt and ckpt.model_checkpoint_path assert readstate, "the params dictionary is not valid" print("restore models' param") saver.restore(self.sess, model_path) self.data_size = data_size self.batch_size = batch_size #rnet and onet minibatch(test)
Example #11
Source File: detector.py From Gather-Deployment with MIT License | 6 votes |
def __init__(self, net_factory, data_size, batch_size, model_path): graph = tf.Graph() with graph.as_default(): self.image_op = tf.placeholder(tf.float32, shape=[batch_size, data_size, data_size, 3], name='input_image') #figure out landmark self.cls_prob, self.bbox_pred, self.landmark_pred = net_factory(self.image_op, training=False) self.sess = tf.Session( config=tf.ConfigProto(allow_soft_placement=True, gpu_options=tf.GPUOptions(allow_growth=True))) saver = tf.train.Saver() #check whether the dictionary is valid model_dict = '/'.join(model_path.split('/')[:-1]) ckpt = tf.train.get_checkpoint_state(model_dict) print(model_path) readstate = ckpt and ckpt.model_checkpoint_path assert readstate, "the params dictionary is not valid" print("restore models' param") saver.restore(self.sess, model_path) self.data_size = data_size self.batch_size = batch_size #rnet and onet minibatch(test)
Example #12
Source File: run_atari.py From MOREL with MIT License | 6 votes |
def train(env_id, num_timesteps, seed, policy, hparams): ncpu = multiprocessing.cpu_count() #if sys.platform == 'darwin': ncpu //= 2 gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=hparams['gpu_fraction']) config = tf.ConfigProto(allow_soft_placement=True, intra_op_parallelism_threads=ncpu, inter_op_parallelism_threads=ncpu, gpu_options=gpu_options) config.gpu_options.allow_growth = False #pylint: disable=E1101 tf.Session(config=config).__enter__() video_log_dir = os.path.join(hparams['base_dir'], 'videos', hparams['experiment_name']) env = VecFrameStack(make_atari_env(env_id, 8, seed, video_log_dir=video_log_dir, write_attention_video='attention' in policy, nsteps=128), 4) policy = {'cnn' : CnnPolicy, 'lstm' : LstmPolicy, 'lnlstm' : LnLstmPolicy, 'cnn_attention': CnnAttentionPolicy}[policy] ppo2.learn(policy=policy, env=env, nsteps=128, nminibatches=4, lam=0.95, gamma=0.99, noptepochs=4, log_interval=1, ent_coef=.01, lr=lambda f : f * 2.5e-4, cliprange=lambda f : f * 0.1, total_timesteps=int(num_timesteps * 1.1), hparams=hparams)
Example #13
Source File: vqn-cnn.py From QARC with BSD 3-Clause "New" or "Revised" License | 6 votes |
def predict(images): gpu_options = tf.GPUOptions(allow_growth=True) with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess: x = tf.placeholder( shape=[None, INPUT_SEQ, INPUT_H, INPUT_W, INPUT_D], dtype=tf.float32) y_ = tf.placeholder(shape=[None, OUTPUT_DIM], dtype=tf.float32) core_net = vqn_model(x) vars = tf.trainable_variables() lossL2 = tf.add_n([tf.nn.l2_loss(v) for v in vars]) * 1e-3 core_net_loss = tflearn.objectives.mean_square(core_net, y_) # + lossL2 core_train_op = tf.train.AdamOptimizer( learning_rate=LR_RATE).minimize(core_net_loss) core_net_acc = tf.reduce_mean( tf.abs(core_net - y_) / (tf.abs(core_net) + tf.abs(y_) / 2)) core_net_mape = tf.subtract(1.0, tf.reduce_mean( tf.abs(core_net - y_) / tf.abs(y_))) train_len = X.shape[0] sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() saver.restore("model/nn_model_ep_300.ckpt") _test_y = sess.run(core_net, feed_dict={x: images}) return _test_y
Example #14
Source File: main.py From DQN-tensorflow with MIT License | 6 votes |
def main(_): gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=calc_gpu_fraction(FLAGS.gpu_fraction)) with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess: config = get_config(FLAGS) or FLAGS if config.env_type == 'simple': env = SimpleGymEnvironment(config) else: env = GymEnvironment(config) if not tf.test.is_gpu_available() and FLAGS.use_gpu: raise Exception("use_gpu flag is true when no GPUs are available") if not FLAGS.use_gpu: config.cnn_format = 'NHWC' agent = Agent(config, env, sess) if FLAGS.is_train: agent.train() else: agent.play()
Example #15
Source File: tfr2wav.py From vqvae-speech with MIT License | 5 votes |
def main(_): tf.gfile.MkDir(args.output_dir) data = ByteWavWholeReader( speaker_list=txt2list(args.speaker_list), filenames=tf.gfile.Glob(args.file_pattern), num_epoch=1) XNOM = data.f[0] XWAV = tf.expand_dims(mu_law_decode(data.x[0, :]), -1) XBIN = tf.contrib.ffmpeg.encode_audio(XWAV, 'wav', 16000) sess_config = tf.ConfigProto( allow_soft_placement=True, gpu_options=tf.GPUOptions(allow_growth=True)) with tf.Session(config=sess_config) as sess: sess.run(tf.tables_initializer()) sess.run(data.iterator.initializer) csv = open('vctk.csv', 'w') counter = 1 while True: try: fetch = {'xbin': XBIN, 'xwav': XWAV, 'wav_name': XNOM} result = sess.run(fetch) wav_name = result['wav_name'].decode('utf8') print('\rFile {:05d}: Processing {}'.format(counter, wav_name), end='') csv.write('{}, {:d}\n'.format(wav_name, len(result['xwav']))) filename = os.path.join(args.output_dir, wav_name) + '.wav' with open(filename, 'wb') as fp: fp.write(result['xbin']) counter += 1 except tf.errors.OutOfRangeError: print('\nEpoch complete') break print() csv.close()
Example #16
Source File: compare.py From tindetheus with MIT License | 5 votes |
def load_and_align_data(image_paths, image_size, margin, gpu_memory_fraction): minsize = 20 # minimum size of face threshold = [ 0.6, 0.7, 0.7 ] # three steps's threshold factor = 0.709 # scale factor print('Creating networks and loading parameters') with tf.Graph().as_default(): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None) tmp_image_paths=copy.copy(image_paths) img_list = [] for image in tmp_image_paths: img = misc.imread(os.path.expanduser(image), mode='RGB') img_size = np.asarray(img.shape)[0:2] bounding_boxes, _ = align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor) if len(bounding_boxes) < 1: image_paths.remove(image) print("can't detect face, remove ", image) continue det = np.squeeze(bounding_boxes[0,0:4]) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0]-margin/2, 0) bb[1] = np.maximum(det[1]-margin/2, 0) bb[2] = np.minimum(det[2]+margin/2, img_size[1]) bb[3] = np.minimum(det[3]+margin/2, img_size[0]) cropped = img[bb[1]:bb[3],bb[0]:bb[2],:] aligned = misc.imresize(cropped, (image_size, image_size), interp='bilinear') prewhitened = facenet.prewhiten(aligned) img_list.append(prewhitened) images = np.stack(img_list) return images
Example #17
Source File: cluster_utils.py From FastNN with BSD 2-Clause "Simplified" License | 5 votes |
def create_config_proto(): """Returns session config proto.""" config = tf.ConfigProto( log_device_placement=FLAGS.log_device_placement, inter_op_parallelism_threads=FLAGS.inter_op_parallelism_threads, intra_op_parallelism_threads=FLAGS.intra_op_parallelism_threads, allow_soft_placement=True, gpu_options=tf.GPUOptions( force_gpu_compatible=True, allow_growth=True)) return config
Example #18
Source File: export_embeddings.py From tindetheus with MIT License | 5 votes |
def load_and_align_data(image_paths, image_size, margin, gpu_memory_fraction): minsize = 20 # minimum size of face threshold = [0.6, 0.7, 0.7] # three steps's threshold factor = 0.709 # scale factor print('Creating networks and loading parameters') with tf.Graph().as_default(): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction) # noqa: E501 sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = detect_face.create_mtcnn(sess, None) nrof_samples = len(image_paths) img_list = [None] * nrof_samples for i in xrange(nrof_samples): print(image_paths[i]) img = imageio.imread(os.path.expanduser(image_paths[i])) img_size = np.asarray(img.shape)[0:2] bounding_boxes, _ = detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor) det = np.squeeze(bounding_boxes[0, 0:4]) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0]-margin/2, 0) bb[1] = np.maximum(det[1]-margin/2, 0) bb[2] = np.minimum(det[2]+margin/2, img_size[1]) bb[3] = np.minimum(det[3]+margin/2, img_size[0]) cropped = img[bb[1]:bb[3], bb[0]:bb[2], :] aligned = resize(cropped, (image_size, image_size)) prewhitened = facenet.prewhiten(aligned) img_list[i] = prewhitened images = np.stack(img_list) return images
Example #19
Source File: utils.py From text-detection-ocr with Apache License 2.0 | 5 votes |
def get_session(gpu_fraction=0.6): '''''Assume that you have 6GB of GPU memory and want to allocate ~2GB''' num_threads = os.environ.get('OMP_NUM_THREADS') gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_fraction) if num_threads: return tf.Session(config=tf.ConfigProto( gpu_options=gpu_options, intra_op_parallelism_threads=num_threads, allow_soft_placement=True)) else: return tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True))
Example #20
Source File: SiameseTracker.py From SiamFC-tf with MIT License | 5 votes |
def __init__(self, debug=0, checkpoint='Logs/SiamFC/track_model_checkpoints/SiamFC-3s-color-pretrained'): os.environ['CUDA_VISIBLE_DEVICES'] = auto_select_gpu() # run only on cpu # os.environ['CUDA_VISIBLE_DEVICES'] = '-1' model_config, _, track_config = load_cfgs(checkpoint) track_config['log_level'] = debug g = tf.Graph() with g.as_default(): model = inference_wrapper.InferenceWrapper() restore_fn = model.build_graph_from_config(model_config, track_config, checkpoint) g.finalize() if not osp.isdir(track_config['log_dir']): logging.info('Creating inference directory: %s', track_config['log_dir']) mkdir_p(track_config['log_dir']) gpu_options = tf.GPUOptions(allow_growth=True) sess_config = tf.ConfigProto(gpu_options=gpu_options) sess = tf.Session(graph=g, config=sess_config) # sess.run(tf.global_variables_initializer()) restore_fn(sess) tracker = Tracker(model, model_config=model_config, track_config=track_config) video_name = "demo" video_log_dir = osp.join(track_config['log_dir'], video_name) rmdir(video_log_dir) mkdir_p(video_log_dir) self.tracker = tracker self.sess = sess self.video_log_dir = video_log_dir self.graph = g
Example #21
Source File: run_SiamFC.py From SiamFC-tf with MIT License | 5 votes |
def run_SiamFC(seq, rp, bSaveImage): checkpoint_path = CHECKPOINT logging.info('Evaluating {}...'.format(checkpoint_path)) # Read configurations from json model_config, _, track_config = load_cfgs(checkpoint_path) track_config['log_level'] = 0 # Skip verbose logging for speed # Build the inference graph. g = tf.Graph() with g.as_default(): model = inference_wrapper.InferenceWrapper() restore_fn = model.build_graph_from_config(model_config, track_config, checkpoint_path) g.finalize() gpu_options = tf.GPUOptions(allow_growth=True) sess_config = tf.ConfigProto(gpu_options=gpu_options) with tf.Session(graph=g, config=sess_config) as sess: # Load the model from checkpoint. restore_fn(sess) tracker = Tracker(model, model_config, track_config) tic = time.clock() frames = seq.s_frames init_rect = seq.init_rect x, y, width, height = init_rect # OTB format init_bb = Rectangle(x - 1, y - 1, width, height) trajectory_py = tracker.track(sess, init_bb, frames) trajectory = [Rectangle(val.x + 1, val.y + 1, val.width, val.height) for val in trajectory_py] # x, y add one to match OTB format duration = time.clock() - tic result = dict() result['res'] = trajectory result['type'] = 'rect' result['fps'] = round(seq.len / duration, 3) return result
Example #22
Source File: fcn_detector.py From Gather-Deployment with MIT License | 5 votes |
def __init__(self, net_factory, model_path): #create a graph graph = tf.Graph() with graph.as_default(): #define tensor and op in graph(-1,1) self.image_op = tf.placeholder(tf.float32, name='input_image') self.width_op = tf.placeholder(tf.int32, name='image_width') self.height_op = tf.placeholder(tf.int32, name='image_height') image_reshape = tf.reshape(self.image_op, [1, self.height_op, self.width_op, 3]) #self.cls_prob batch*2 #self.bbox_pred batch*4 #construct model here #self.cls_prob, self.bbox_pred = net_factory(image_reshape, training=False) #contains landmark self.cls_prob, self.bbox_pred, _ = net_factory(image_reshape, training=False) #allow self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, gpu_options=tf.GPUOptions(allow_growth=True))) saver = tf.train.Saver() #check whether the dictionary is valid model_dict = '/'.join(model_path.split('/')[:-1]) ckpt = tf.train.get_checkpoint_state(model_dict) print (model_path) readstate = ckpt and ckpt.model_checkpoint_path assert readstate, "the params dictionary is not valid" print ("restore models' param") saver.restore(self.sess, model_path)
Example #23
Source File: build.py From Automatic-Identification-and-Counting-of-Blood-Cells with GNU General Public License v3.0 | 5 votes |
def setup_meta_ops(self): cfg = dict({ 'allow_soft_placement': False, 'log_device_placement': False }) utility = min(self.FLAGS.gpu, 1.) if utility > 0.0: self.say('GPU mode with {} usage'.format(utility)) cfg['gpu_options'] = tf.GPUOptions( per_process_gpu_memory_fraction=utility) cfg['allow_soft_placement'] = True else: self.say('Running entirely on CPU') cfg['device_count'] = {'GPU': 0} if self.FLAGS.train: self.build_train_op() if self.FLAGS.summary: self.summary_op = tf.summary.merge_all() self.writer = tf.summary.FileWriter(self.FLAGS.summary + 'train') self.sess = tf.Session(config=tf.ConfigProto(**cfg)) self.sess.run(tf.global_variables_initializer()) if not self.ntrain: return self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=self.FLAGS.keep) if self.FLAGS.load != 0: self.load_from_ckpt() if self.FLAGS.summary: self.writer.add_graph(self.sess.graph)
Example #24
Source File: fcn_detector.py From Gather-Deployment with MIT License | 5 votes |
def __init__(self, net_factory, model_path): #create a graph graph = tf.Graph() with graph.as_default(): #define tensor and op in graph(-1,1) self.image_op = tf.placeholder(tf.float32, name='input_image') self.width_op = tf.placeholder(tf.int32, name='image_width') self.height_op = tf.placeholder(tf.int32, name='image_height') image_reshape = tf.reshape(self.image_op, [1, self.height_op, self.width_op, 3]) #self.cls_prob batch*2 #self.bbox_pred batch*4 #construct model here #self.cls_prob, self.bbox_pred = net_factory(image_reshape, training=False) #contains landmark self.cls_prob, self.bbox_pred, _ = net_factory(image_reshape, training=False) #allow self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, gpu_options=tf.GPUOptions(allow_growth=True))) saver = tf.train.Saver() #check whether the dictionary is valid model_dict = '/'.join(model_path.split('/')[:-1]) ckpt = tf.train.get_checkpoint_state(model_dict) print (model_path) readstate = ckpt and ckpt.model_checkpoint_path assert readstate, "the params dictionary is not valid" print ("restore models' param") saver.restore(self.sess, model_path)
Example #25
Source File: evaluate_supervise.py From GroundeR with MIT License | 5 votes |
def run_evaluate(): train_list = [] test_list = [] config = Config() train_list = load_img_id_list(config.train_file_list) test_list = load_img_id_list(config.test_file_list) config.save_path = config.save_path + '_' + args.model_name assert(os.path.isdir(config.save_path)) restore_id = args.restore_id assert(restore_id > 0) cur_dataset = dataprovider(train_list, test_list, config.img_feat_dir, config.sen_dir, config.vocab_size, batch_size=config.batch_size) model = ground_model(config) gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.3) with tf.Graph().as_default(): loss, train_op, loss_vec, logits = model.build_model() # Create a session for running Ops on the Graph. sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) # Run the Op to initialize the variables. init = tf.global_variables_initializer() sess.run(init) saver = tf.train.Saver(max_to_keep=100) feed_dict = update_feed_dict(cur_dataset, model, False) print 'Restore model_%d'%restore_id saver.restore(sess, './model/%s/model_%d.ckpt'%(config.save_path, restore_id)) print "-----------------------------------------------" eval_accu = run_eval(sess, cur_dataset, model, logits, feed_dict) print "-----------------------------------------------"
Example #26
Source File: transfer_cifar10_softmax_b1.py From deligan with MIT License | 5 votes |
def serialize_cifar_pool3(X,filename): print 'About to generate file: %s' % filename gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.1) sess = tf.InteractiveSession(config=tf.ConfigProto(gpu_options=gpu_options)) X_pool3 = batch_pool3_features(sess,X) np.save(filename,X_pool3)
Example #27
Source File: resnet_utils.py From YellowFin with Apache License 2.0 | 5 votes |
def GetTrainingSession(model_train, n_core=16, gpu_mem_portion=0.99): mon_sess = tf.train.MonitoredTrainingSession( config=tf.ConfigProto(intra_op_parallelism_threads=n_core, inter_op_parallelism_threads=n_core, allow_soft_placement=True, log_device_placement=True, gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_mem_portion))) return mon_sess
Example #28
Source File: utils.py From ppo-lstm-parallel with MIT License | 5 votes |
def create_session(env_opts, on_gpu): import tensorflow as tf if env_opts["use_gpu"] and on_gpu: gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=env_opts["mem_fraction"]) session = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) else: gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.05) session = tf.Session(config=tf.ConfigProto(device_count={'CPU': 1, 'GPU': 0}, gpu_options=gpu_options)) return session
Example #29
Source File: build.py From Traffic_sign_detection_YOLO with MIT License | 5 votes |
def setup_meta_ops(self): cfg = dict({ 'allow_soft_placement': False, 'log_device_placement': False }) utility = min(self.FLAGS.gpu, 1.) if utility > 0.0: self.say('GPU mode with {} usage'.format(utility)) cfg['gpu_options'] = tf.GPUOptions( per_process_gpu_memory_fraction = utility) cfg['allow_soft_placement'] = True else: self.say('Running entirely on CPU') cfg['device_count'] = {'GPU': 0} if self.FLAGS.train: self.build_train_op() if self.FLAGS.summary: self.summary_op = tf.summary.merge_all() self.writer = tf.summary.FileWriter(self.FLAGS.summary + 'train') self.sess = tf.Session(config = tf.ConfigProto(**cfg)) self.sess.run(tf.global_variables_initializer()) if not self.ntrain: return self.saver = tf.train.Saver(tf.global_variables(), max_to_keep = self.FLAGS.keep) if self.FLAGS.load != 0: self.load_from_ckpt() if self.FLAGS.summary: self.writer.add_graph(self.sess.graph)
Example #30
Source File: train_val.py From YOLO_v2 with GNU General Public License v3.0 | 5 votes |
def __init__(self, yolo, data): self.yolo = yolo self.data = data self.num_class = len(cfg.CLASSES) self.max_step = cfg.MAX_ITER self.saver_iter = cfg.SAVER_ITER self.summary_iter = cfg.SUMMARY_ITER self.initial_learn_rate = cfg.LEARN_RATE self.output_dir = os.path.join(cfg.DATA_DIR, 'output') weight_file = os.path.join(self.output_dir, cfg.WEIGHTS_FILE) self.variable_to_restore = tf.global_variables() self.saver = tf.train.Saver(self.variable_to_restore) self.summary_op = tf.summary.merge_all() self.writer = tf.summary.FileWriter(self.output_dir) self.global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False) self.learn_rate = tf.train.exponential_decay(self.initial_learn_rate, self.global_step, 20000, 0.1, name='learn_rate') # self.global_step = tf.Variable(0, trainable = False) # self.learn_rate = tf.train.piecewise_constant(self.global_step, [100, 190, 10000, 15500], [1e-3, 5e-3, 1e-2, 1e-3, 1e-4]) self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learn_rate).minimize(self.yolo.total_loss, global_step=self.global_step) self.average_op = tf.train.ExponentialMovingAverage(0.999).apply(tf.trainable_variables()) with tf.control_dependencies([self.optimizer]): self.train_op = tf.group(self.average_op) config = tf.ConfigProto(gpu_options=tf.GPUOptions()) self.sess = tf.Session(config=config) self.sess.run(tf.global_variables_initializer()) print('Restore weights from:', weight_file) self.saver.restore(self.sess, weight_file) self.writer.add_graph(self.sess.graph)