Python tensorflow.moving_average_variables() Examples
The following are 30
code examples of tensorflow.moving_average_variables().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: ops.py From pix2vox with GNU General Public License v3.0 | 6 votes |
def batch_norm(x, train, name, decay=0.99, epsilon=1e-5): shape = x.get_shape().as_list() with tf.variable_scope(name): beta = tf.get_variable('beta', [shape[-1]], initializer=tf.constant_initializer(0.)) gamma = tf.get_variable('gamma', [shape[-1]], initializer=tf.random_normal_initializer(1., 0.02)) pop_mean = tf.get_variable('pop_mean', [shape[-1]], initializer=tf.constant_initializer(0.), trainable=False) pop_var = tf.get_variable('pop_var', [shape[-1]], initializer=tf.constant_initializer(1.), trainable=False) if pop_mean not in tf.moving_average_variables(): tf.add_to_collection(tf.GraphKeys.MOVING_AVERAGE_VARIABLES, pop_mean) tf.add_to_collection(tf.GraphKeys.MOVING_AVERAGE_VARIABLES, pop_var) def func1(): # Execute at training time batch_mean, batch_var = tf.nn.moments(x, range(len(shape) - 1)) update_mean = tf.assign_sub(pop_mean, (1 - decay)*(pop_mean - batch_mean)) update_var = tf.assign_sub(pop_var, (1 - decay)*(pop_var - batch_var)) with tf.control_dependencies([update_mean, update_var]): return tf.nn.batch_normalization(x, batch_mean, batch_var, beta, gamma, epsilon) def func2(): # Execute at test time return tf.nn.batch_normalization(x, pop_mean, pop_var, beta, gamma, epsilon) return tf.cond(train, func1, func2)
Example #2
Source File: ops_test.py From Action_Recognition_Zoo with MIT License | 5 votes |
def testCreateVariablesWithoutCenterWithoutScale(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images, center=False, scale=False) beta = variables.get_variables_by_name('beta') self.assertEquals(beta, []) gamma = variables.get_variables_by_name('gamma') self.assertEquals(gamma, []) moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #3
Source File: ops_test.py From models with Apache License 2.0 | 5 votes |
def testMovingAverageVariables(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images, scale=True) moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #4
Source File: ops_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def testCreateVariablesWithoutCenterWithScale(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images, center=False, scale=True) beta = variables.get_variables_by_name('beta') self.assertEquals(beta, []) gamma = variables.get_variables_by_name('gamma')[0] self.assertEquals(gamma.op.name, 'BatchNorm/gamma') moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #5
Source File: ops_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def testCreateVariablesWithoutCenterWithoutScale(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images, center=False, scale=False) beta = variables.get_variables_by_name('beta') self.assertEquals(beta, []) gamma = variables.get_variables_by_name('gamma') self.assertEquals(gamma, []) moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #6
Source File: ops_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def testCreateVariablesWithScale(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images, scale=True) beta = variables.get_variables_by_name('beta')[0] gamma = variables.get_variables_by_name('gamma')[0] self.assertEquals(beta.op.name, 'BatchNorm/beta') self.assertEquals(gamma.op.name, 'BatchNorm/gamma') moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #7
Source File: ops_test.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def testCreateVariablesWithoutCenterWithoutScale(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images, center=False, scale=False) beta = variables.get_variables_by_name('beta') self.assertEquals(beta, []) gamma = variables.get_variables_by_name('gamma') self.assertEquals(gamma, []) moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #8
Source File: ops_test.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def testCreateVariablesWithoutCenterWithScale(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images, center=False, scale=True) beta = variables.get_variables_by_name('beta') self.assertEquals(beta, []) gamma = variables.get_variables_by_name('gamma')[0] self.assertEquals(gamma.op.name, 'BatchNorm/gamma') moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #9
Source File: ops_test.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def testCreateVariablesWithScale(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images, scale=True) beta = variables.get_variables_by_name('beta')[0] gamma = variables.get_variables_by_name('gamma')[0] self.assertEquals(beta.op.name, 'BatchNorm/beta') self.assertEquals(gamma.op.name, 'BatchNorm/gamma') moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #10
Source File: ops_test.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def testCreateVariables(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images) beta = variables.get_variables_by_name('beta')[0] self.assertEquals(beta.op.name, 'BatchNorm/beta') gamma = variables.get_variables_by_name('gamma') self.assertEquals(gamma, []) moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #11
Source File: ops_test.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def testMovingAverageVariables(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images, scale=True) moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #12
Source File: ops_test.py From ECO-pytorch with BSD 2-Clause "Simplified" License | 5 votes |
def testCreateVariablesWithoutCenterWithoutScale(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images, center=False, scale=False) beta = variables.get_variables_by_name('beta') self.assertEquals(beta, []) gamma = variables.get_variables_by_name('gamma') self.assertEquals(gamma, []) moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #13
Source File: ops_test.py From ECO-pytorch with BSD 2-Clause "Simplified" License | 5 votes |
def testCreateVariablesWithoutCenterWithScale(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images, center=False, scale=True) beta = variables.get_variables_by_name('beta') self.assertEquals(beta, []) gamma = variables.get_variables_by_name('gamma')[0] self.assertEquals(gamma.op.name, 'BatchNorm/gamma') moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #14
Source File: ops_test.py From ECO-pytorch with BSD 2-Clause "Simplified" License | 5 votes |
def testCreateVariablesWithScale(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images, scale=True) beta = variables.get_variables_by_name('beta')[0] gamma = variables.get_variables_by_name('gamma')[0] self.assertEquals(beta.op.name, 'BatchNorm/beta') self.assertEquals(gamma.op.name, 'BatchNorm/gamma') moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #15
Source File: ops_test.py From ECO-pytorch with BSD 2-Clause "Simplified" License | 5 votes |
def testCreateVariables(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images) beta = variables.get_variables_by_name('beta')[0] self.assertEquals(beta.op.name, 'BatchNorm/beta') gamma = variables.get_variables_by_name('gamma') self.assertEquals(gamma, []) moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #16
Source File: ops_test.py From Action_Recognition_Zoo with MIT License | 5 votes |
def testMovingAverageVariables(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images, scale=True) moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #17
Source File: ops_test.py From ECO-pytorch with BSD 2-Clause "Simplified" License | 5 votes |
def testMovingAverageVariables(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images, scale=True) moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #18
Source File: ops_test.py From Action_Recognition_Zoo with MIT License | 5 votes |
def testCreateVariablesWithoutCenterWithScale(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images, center=False, scale=True) beta = variables.get_variables_by_name('beta') self.assertEquals(beta, []) gamma = variables.get_variables_by_name('gamma')[0] self.assertEquals(gamma.op.name, 'BatchNorm/gamma') moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #19
Source File: ops_test.py From Action_Recognition_Zoo with MIT License | 5 votes |
def testCreateVariablesWithScale(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images, scale=True) beta = variables.get_variables_by_name('beta')[0] gamma = variables.get_variables_by_name('gamma')[0] self.assertEquals(beta.op.name, 'BatchNorm/beta') self.assertEquals(gamma.op.name, 'BatchNorm/gamma') moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #20
Source File: ops_test.py From Action_Recognition_Zoo with MIT License | 5 votes |
def testCreateVariables(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images) beta = variables.get_variables_by_name('beta')[0] self.assertEquals(beta.op.name, 'BatchNorm/beta') gamma = variables.get_variables_by_name('gamma') self.assertEquals(gamma, []) moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #21
Source File: east_multi_infer.py From uai-sdk with Apache License 2.0 | 5 votes |
def begin(self): """ Create restoring operations before the graph been finalized. """ east_variables = tf.moving_average_variables() self._restore_ops = [tf.assign(x, self._east.average(x)) for x in east_variables]
Example #22
Source File: ops_test.py From piecewisecrf with MIT License | 5 votes |
def testMovingAverageVariables(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images, scale=True) moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #23
Source File: ops_test.py From piecewisecrf with MIT License | 5 votes |
def testCreateVariablesWithoutCenterWithoutScale(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images, center=False, scale=False) beta = variables.get_variables_by_name('beta') self.assertEquals(beta, []) gamma = variables.get_variables_by_name('gamma') self.assertEquals(gamma, []) moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #24
Source File: ops_test.py From piecewisecrf with MIT License | 5 votes |
def testCreateVariablesWithoutCenterWithScale(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images, center=False, scale=True) beta = variables.get_variables_by_name('beta') self.assertEquals(beta, []) gamma = variables.get_variables_by_name('gamma')[0] self.assertEquals(gamma.op.name, 'BatchNorm/gamma') moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #25
Source File: ops_test.py From piecewisecrf with MIT License | 5 votes |
def testCreateVariablesWithScale(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images, scale=True) beta = variables.get_variables_by_name('beta')[0] gamma = variables.get_variables_by_name('gamma')[0] self.assertEquals(beta.op.name, 'BatchNorm/beta') self.assertEquals(gamma.op.name, 'BatchNorm/gamma') moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #26
Source File: ops_test.py From piecewisecrf with MIT License | 5 votes |
def testCreateVariables(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images) beta = variables.get_variables_by_name('beta')[0] self.assertEquals(beta.op.name, 'BatchNorm/beta') gamma = variables.get_variables_by_name('gamma') self.assertEquals(gamma, []) moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #27
Source File: ops_test.py From DeepSolar with MIT License | 5 votes |
def testMovingAverageVariables(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images, scale=True) moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #28
Source File: ops_test.py From DeepSolar with MIT License | 5 votes |
def testCreateVariablesWithoutCenterWithoutScale(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images, center=False, scale=False) beta = variables.get_variables_by_name('beta') self.assertEquals(beta, []) gamma = variables.get_variables_by_name('gamma') self.assertEquals(gamma, []) moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #29
Source File: ops_test.py From DeepSolar with MIT License | 5 votes |
def testCreateVariablesWithoutCenterWithScale(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images, center=False, scale=True) beta = variables.get_variables_by_name('beta') self.assertEquals(beta, []) gamma = variables.get_variables_by_name('gamma')[0] self.assertEquals(gamma.op.name, 'BatchNorm/gamma') moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
Example #30
Source File: ops_test.py From DeepSolar with MIT License | 5 votes |
def testCreateVariablesWithScale(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images, scale=True) beta = variables.get_variables_by_name('beta')[0] gamma = variables.get_variables_by_name('gamma')[0] self.assertEquals(beta.op.name, 'BatchNorm/beta') self.assertEquals(gamma.op.name, 'BatchNorm/gamma') moving_mean = tf.moving_average_variables()[0] moving_variance = tf.moving_average_variables()[1] self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean') self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')