Python tensorflow.sub() Examples
The following are 30
code examples of tensorflow.sub().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: DenoisingAutoencoder.py From Action_Recognition_Zoo with MIT License | 6 votes |
def __init__(self, n_input, n_hidden, transfer_function = tf.nn.softplus, optimizer = tf.train.AdamOptimizer(), dropout_probability = 0.95): self.n_input = n_input self.n_hidden = n_hidden self.transfer = transfer_function self.dropout_probability = dropout_probability self.keep_prob = tf.placeholder(tf.float32) network_weights = self._initialize_weights() self.weights = network_weights # model self.x = tf.placeholder(tf.float32, [None, self.n_input]) self.hidden = self.transfer(tf.add(tf.matmul(tf.nn.dropout(self.x, self.keep_prob), self.weights['w1']), self.weights['b1'])) self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2']) # cost self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.sub(self.reconstruction, self.x), 2.0)) self.optimizer = optimizer.minimize(self.cost) init = tf.initialize_all_variables() self.sess = tf.Session() self.sess.run(init)
Example #2
Source File: DenoisingAutoencoder.py From ECO-pytorch with BSD 2-Clause "Simplified" License | 6 votes |
def __init__(self, n_input, n_hidden, transfer_function = tf.nn.softplus, optimizer = tf.train.AdamOptimizer(), dropout_probability = 0.95): self.n_input = n_input self.n_hidden = n_hidden self.transfer = transfer_function self.dropout_probability = dropout_probability self.keep_prob = tf.placeholder(tf.float32) network_weights = self._initialize_weights() self.weights = network_weights # model self.x = tf.placeholder(tf.float32, [None, self.n_input]) self.hidden = self.transfer(tf.add(tf.matmul(tf.nn.dropout(self.x, self.keep_prob), self.weights['w1']), self.weights['b1'])) self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2']) # cost self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.sub(self.reconstruction, self.x), 2.0)) self.optimizer = optimizer.minimize(self.cost) init = tf.initialize_all_variables() self.sess = tf.Session() self.sess.run(init)
Example #3
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testFloatBasic(self): x = np.linspace(-5, 20, 15).reshape(1, 3, 5).astype(np.float32) y = np.linspace(20, -5, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(x, y, np.add, tf.add, also_compare_variables=True) self._compareBoth(x, y, np.subtract, tf.sub) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y + 0.1, np.true_divide, tf.truediv) self._compareBoth(x, y + 0.1, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.add, _ADD) self._compareBoth(x, y, np.subtract, _SUB) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y + 0.1, np.true_divide, _TRUEDIV) self._compareBoth(x, y + 0.1, np.floor_divide, _FLOORDIV) try: from scipy import special # pylint: disable=g-import-not-at-top a_pos_small = np.linspace(0.1, 2, 15).reshape(1, 3, 5).astype(np.float32) x_pos_small = np.linspace(0.1, 10, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(a_pos_small, x_pos_small, special.gammainc, tf.igamma) self._compareBoth(a_pos_small, x_pos_small, special.gammaincc, tf.igammac) # Need x > 1 self._compareBoth(x_pos_small + 1, a_pos_small, special.zeta, tf.zeta) n_small = np.arange(0, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(n_small, x_pos_small, special.polygamma, tf.polygamma) except ImportError as e: tf.logging.warn("Cannot test special functions: %s" % str(e))
Example #4
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testDoubleBasic(self): x = np.linspace(-5, 20, 15).reshape(1, 3, 5).astype(np.float64) y = np.linspace(20, -5, 15).reshape(1, 3, 5).astype(np.float64) self._compareBoth(x, y, np.add, tf.add) self._compareBoth(x, y, np.subtract, tf.sub) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y + 0.1, np.true_divide, tf.truediv) self._compareBoth(x, y + 0.1, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.add, _ADD) self._compareBoth(x, y, np.subtract, _SUB) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y + 0.1, np.true_divide, _TRUEDIV) self._compareBoth(x, y + 0.1, np.floor_divide, _FLOORDIV) try: from scipy import special # pylint: disable=g-import-not-at-top a_pos_small = np.linspace(0.1, 2, 15).reshape(1, 3, 5).astype(np.float32) x_pos_small = np.linspace(0.1, 10, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(a_pos_small, x_pos_small, special.gammainc, tf.igamma) self._compareBoth(a_pos_small, x_pos_small, special.gammaincc, tf.igammac) except ImportError as e: tf.logging.warn("Cannot test special functions: %s" % str(e))
Example #5
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testInt32Basic(self): x = np.arange(1, 13, 2).reshape(1, 3, 2).astype(np.int32) y = np.arange(1, 7, 1).reshape(1, 3, 2).astype(np.int32) self._compareBoth(x, y, np.add, tf.add) self._compareBoth(x, y, np.subtract, tf.sub) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y, np.true_divide, tf.truediv) self._compareBoth(x, y, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.mod, tf.mod) self._compareBoth(x, y, np.add, _ADD) self._compareBoth(x, y, np.subtract, _SUB) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y, np.true_divide, _TRUEDIV) self._compareBoth(x, y, np.floor_divide, _FLOORDIV) self._compareBoth(x, y, np.mod, _MOD) # _compareBoth tests on GPU only for floating point types, so test # _MOD for int32 on GPU by calling _compareGpu self._compareGpu(x, y, np.mod, _MOD)
Example #6
Source File: utilities.py From learn_prox_ops with GNU General Public License v3.0 | 6 votes |
def tf_mse(a, b, reduction_indices=None, name='mse'): """ Mean squared error for TensorFlow. :param a: First input tensor :type b: tf.Tensor :param a: Second input tensor :type b: tf.Tensor :param reduction_indices: Dimensions to reduce. If None all dimensions are reduced. :type reduction_indices: List or None :param name: Variable scope name :type reduction_indices: String :returns: MSE between a and b :rtype: tf.Tensor """ with tf.variable_scope(name): return tf.reduce_mean(tf.pow(tf.sub(a, b), 2), reduction_indices=reduction_indices)
Example #7
Source File: vgsl_input.py From ECO-pytorch with BSD 2-Clause "Simplified" License | 6 votes |
def _ImageProcessing(image_buffer, shape): """Convert a PNG string into an input tensor. We allow for fixed and variable sizes. Does fixed conversion to floats in the range [-1.28, 1.27]. Args: image_buffer: Tensor containing a PNG encoded image. shape: ImageShape with the desired shape of the input. Returns: image: Decoded, normalized image in the range [-1.28, 1.27]. """ image = tf.image.decode_png(image_buffer, channels=shape.depth) image.set_shape([shape.height, shape.width, shape.depth]) image = tf.cast(image, tf.float32) image = tf.sub(image, 128.0) image = tf.mul(image, 1 / 100.0) return image
Example #8
Source File: DenoisingAutoencoder.py From ECO-pytorch with BSD 2-Clause "Simplified" License | 6 votes |
def __init__(self, n_input, n_hidden, transfer_function = tf.nn.softplus, optimizer = tf.train.AdamOptimizer(), scale = 0.1): self.n_input = n_input self.n_hidden = n_hidden self.transfer = transfer_function self.scale = tf.placeholder(tf.float32) self.training_scale = scale network_weights = self._initialize_weights() self.weights = network_weights # model self.x = tf.placeholder(tf.float32, [None, self.n_input]) self.hidden = self.transfer(tf.add(tf.matmul(self.x + scale * tf.random_normal((n_input,)), self.weights['w1']), self.weights['b1'])) self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2']) # cost self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.sub(self.reconstruction, self.x), 2.0)) self.optimizer = optimizer.minimize(self.cost) init = tf.initialize_all_variables() self.sess = tf.Session() self.sess.run(init)
Example #9
Source File: symbolic_functions.py From DDRL with Apache License 2.0 | 6 votes |
def class_balanced_binary_class_cross_entropy(pred, label, name='cross_entropy_loss'): """ The class-balanced cross entropy loss for binary classification, as in `Holistically-Nested Edge Detection <http://arxiv.org/abs/1504.06375>`_. :param pred: size: b x ANYTHING. the predictions in [0,1]. :param label: size: b x ANYTHING. the ground truth in {0,1}. :returns: class-balanced binary classification cross entropy loss """ z = batch_flatten(pred) y = tf.cast(batch_flatten(label), tf.float32) count_neg = tf.reduce_sum(1. - y) count_pos = tf.reduce_sum(y) beta = count_neg / (count_neg + count_pos) eps = 1e-8 loss_pos = -beta * tf.reduce_mean(y * tf.log(tf.abs(z) + eps), 1) loss_neg = (1. - beta) * tf.reduce_mean((1. - y) * tf.log(tf.abs(1. - z) + eps), 1) cost = tf.sub(loss_pos, loss_neg) cost = tf.reduce_mean(cost, name=name) return cost
Example #10
Source File: LSPModels.py From deeppose with GNU General Public License v3.0 | 6 votes |
def _activation_summary(x): """Helper to create summaries for activations. Creates a summary that provides a histogram of activations. Creates a summary that measure the sparsity of activations. Args: x: Tensor Returns: nothing """ # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training # session. This helps the clarity of presentation on tensorboard. tensor_name = re.sub('%s_[0-9]*/' % LSPGlobals.TOWER_NAME, '', x.op.name) tf.histogram_summary(tensor_name + '/activations', x) tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
Example #11
Source File: car_models.py From Cherry-Autonomous-Racecar with MIT License | 6 votes |
def __init__(self): self.x = tf.placeholder(tf.float32, [None, 115, 200, 3]) self.y_ = tf.placeholder(tf.float32, [None, 1]) (self.h_conv1, _) = conv_layer(self.x, conv=(5, 5), stride=2, n_filters=24, use_bias=True) (self.h_conv2, _) = conv_layer(self.h_conv1, conv=(5, 5), stride=2, n_filters=36, use_bias=True) (self.h_conv3, _) = conv_layer(self.h_conv2, conv=(5, 5), stride=2, n_filters=48, use_bias=True) (self.h_conv4, _) = conv_layer(self.h_conv3, conv=(3, 3), stride=1, n_filters=64, use_bias=True) (self.h_conv5, _) = conv_layer(self.h_conv4, conv=(3, 3), stride=1, n_filters=64, use_bias=True) self.h_conv5_flat = flattened(self.h_conv5) (self.h_fc1_drop, _, _, self.keep_prob_fc1) = fc_layer(x=self.h_conv5_flat, n_neurons=512, activation=tf.nn.relu, use_bias=True, dropout=True) (self.h_fc2_drop, _, _, self.keep_prob_fc2) = fc_layer(self.h_fc1_drop, 100, tf.nn.relu, True, True) (self.h_fc3_drop, _, _, self.keep_prob_fc3) = fc_layer(self.h_fc2_drop, 50, tf.nn.relu, True, True) (self.h_fc4_drop, _, _, self.keep_prob_fc4) = fc_layer(self.h_fc3_drop, 10, tf.nn.relu, True, True) W_fc5 = weight_variable([10, 1]) b_fc5 = bias_variable([1]) self.y_out = tf.matmul(self.h_fc4_drop, W_fc5) + b_fc5 self.loss = tf.reduce_mean(tf.abs(tf.sub(self.y_, self.y_out)))
Example #12
Source File: car_models.py From Cherry-Autonomous-Racecar with MIT License | 6 votes |
def __init__(self): self.x = tf.placeholder(tf.float32, [None, 115, 200, 3]) self.y_ = tf.placeholder(tf.float32, [None, 1]) (self.h_conv1, _) = conv_layer(self.x, conv=(5, 5), stride=2, n_filters=24, use_bias=True) (self.h_conv2, _) = conv_layer(self.h_conv1, conv=(5, 5), stride=2, n_filters=36, use_bias=True) (self.h_conv3, _) = conv_layer(self.h_conv2, conv=(5, 5), stride=2, n_filters=48, use_bias=True) (self.h_conv4, _) = conv_layer(self.h_conv3, conv=(3, 3), stride=1, n_filters=64, use_bias=True) (self.h_conv5, _) = conv_layer(self.h_conv4, conv=(3, 3), stride=1, n_filters=64, use_bias=True) self.h_conv5_flat = flattened(self.h_conv5) (self.h_fc1_drop, _, _, self.keep_prob_fc1) = fc_layer(x=self.h_conv5_flat, n_neurons=512, activation=tf.nn.relu, use_bias=True, dropout=True) (self.h_fc2_drop, _, _, self.keep_prob_fc2) = fc_layer(self.h_fc1_drop, 100, tf.nn.relu, True, True) (self.h_fc3_drop, _, _, self.keep_prob_fc3) = fc_layer(self.h_fc2_drop, 50, tf.nn.relu, True, True) (self.h_fc4_drop, _, _, self.keep_prob_fc4) = fc_layer(self.h_fc3_drop, 10, tf.nn.relu, True, True) W_fc5 = weight_variable([10, 1]) b_fc5 = bias_variable([1]) self.y_out = tf.matmul(self.h_fc4_drop, W_fc5) + b_fc5 self.loss = tf.reduce_mean(tf.abs(tf.sub(self.y_, self.y_out)))
Example #13
Source File: LSPModels.py From deeppose with GNU General Public License v3.0 | 6 votes |
def loss(logits, labels): """Calculates Mean Pixel Error. Args: logits: Logits from inference(). labels: Labels from distorted_inputs or inputs(). 1-D tensor of shape [batch_size] Returns: Loss tensor of type float. """ labelValidity = tf.sign(labels, name='label_validity') minop = tf.sub(logits, labels, name='Diff_Op') absop = tf.abs(minop, name='Abs_Op') lossValues = tf.mul(labelValidity, absop, name='lossValues') loss_mean = tf.reduce_mean(lossValues, name='MeanPixelError') tf.add_to_collection('losses', loss_mean) return tf.add_n(tf.get_collection('losses'), name='total_loss'), loss_mean
Example #14
Source File: test_computations.py From ngraph-python with Apache License 2.0 | 6 votes |
def test_binary_ops_combined(self): # computation a = tf.placeholder(tf.float32, shape=(2, 3)) b = tf.placeholder(tf.float32, shape=(2, 3)) c = tf.add(a, b) d = tf.mul(c, a) e = tf.div(d, b) f = tf.sub(a, e) g = tf.maximum(a, f) # value a_val = np.random.rand(*tf_obj_shape(a)) b_val = np.random.rand(*tf_obj_shape(b)) # test self.run(g, tf_feed_dict={a: a_val, b: b_val})
Example #15
Source File: lenet_preprocessing.py From ECO-pytorch with BSD 2-Clause "Simplified" License | 6 votes |
def preprocess_image(image, output_height, output_width, is_training): """Preprocesses the given image. Args: image: A `Tensor` representing an image of arbitrary size. output_height: The height of the image after preprocessing. output_width: The width of the image after preprocessing. is_training: `True` if we're preprocessing the image for training and `False` otherwise. Returns: A preprocessed image. """ image = tf.to_float(image) image = tf.image.resize_image_with_crop_or_pad( image, output_width, output_height) image = tf.sub(image, 128.0) image = tf.div(image, 128.0) return image
Example #16
Source File: control_flow_ops_py_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testCondIndexedSlicesDifferentTypes(self): with self.test_session(): values = tf.constant(10) i_32 = tf.convert_to_tensor(0, name="one", dtype=tf.int32) i_64 = tf.convert_to_tensor(0, name="one", dtype=tf.int64) x = tf.IndexedSlices(values, i_32) pred = tf.less(1, 2) fn1 = lambda: tf.IndexedSlices(tf.add(x.values, 1), i_32) fn2 = lambda: tf.IndexedSlices(tf.sub(x.values, 1), i_64) r = tf.cond(pred, fn1, fn2) val = r.values.eval() ind = r.indices.eval() self.assertTrue(check_op_order(x.values.graph)) self.assertAllEqual(11, val) self.assertAllEqual(0, ind) self.assertTrue(ind.dtype == np.int64)
Example #17
Source File: DenoisingAutoencoder.py From Action_Recognition_Zoo with MIT License | 6 votes |
def __init__(self, n_input, n_hidden, transfer_function = tf.nn.softplus, optimizer = tf.train.AdamOptimizer(), scale = 0.1): self.n_input = n_input self.n_hidden = n_hidden self.transfer = transfer_function self.scale = tf.placeholder(tf.float32) self.training_scale = scale network_weights = self._initialize_weights() self.weights = network_weights # model self.x = tf.placeholder(tf.float32, [None, self.n_input]) self.hidden = self.transfer(tf.add(tf.matmul(self.x + scale * tf.random_normal((n_input,)), self.weights['w1']), self.weights['b1'])) self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2']) # cost self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.sub(self.reconstruction, self.x), 2.0)) self.optimizer = optimizer.minimize(self.cost) init = tf.initialize_all_variables() self.sess = tf.Session() self.sess.run(init)
Example #18
Source File: vgsl_input.py From Action_Recognition_Zoo with MIT License | 6 votes |
def _ImageProcessing(image_buffer, shape): """Convert a PNG string into an input tensor. We allow for fixed and variable sizes. Does fixed conversion to floats in the range [-1.28, 1.27]. Args: image_buffer: Tensor containing a PNG encoded image. shape: ImageShape with the desired shape of the input. Returns: image: Decoded, normalized image in the range [-1.28, 1.27]. """ image = tf.image.decode_png(image_buffer, channels=shape.depth) image.set_shape([shape.height, shape.width, shape.depth]) image = tf.cast(image, tf.float32) image = tf.sub(image, 128.0) image = tf.mul(image, 1 / 100.0) return image
Example #19
Source File: lenet_preprocessing.py From Action_Recognition_Zoo with MIT License | 6 votes |
def preprocess_image(image, output_height, output_width, is_training): """Preprocesses the given image. Args: image: A `Tensor` representing an image of arbitrary size. output_height: The height of the image after preprocessing. output_width: The width of the image after preprocessing. is_training: `True` if we're preprocessing the image for training and `False` otherwise. Returns: A preprocessed image. """ image = tf.to_float(image) image = tf.image.resize_image_with_crop_or_pad( image, output_width, output_height) image = tf.sub(image, 128.0) image = tf.div(image, 128.0) return image
Example #20
Source File: load_ops.py From taskonomy with MIT License | 6 votes |
def rescale_images_tf(input_imgs, dtype, scope=None): '''Convert input from [0, 1] -> [-1.0, 1.0] floats. Args: input_imgs: List of input images (scaled between 0 and 1) with the dimensions specified in the cfg Return: scaled_input_imgs: List of input images after rescaling to [-1, 1] ''' if scope is None: cur_scope = 'rescaled' else: cur_scope = scope with tf.variable_scope(cur_scope): input_img = tf.cast(input_img, dtype, name='cast_input') input_img = tf.mul(input_img, 2., name='rescale_input') scaled_input_imgs = tf.sub(input_img, 1., name='normalize_input') return scaled_input_imgs
Example #21
Source File: control_flow_ops_py_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testWhileCondGrad_UnknownShape(self): with self.test_session() as sess: v = tf.placeholder(tf.float32) n = tf.convert_to_tensor(100.0, name="n") one = tf.convert_to_tensor(1.0, name="one") c = lambda x: tf.less(x, n) # pylint: disable=undefined-variable # for OSS build b = lambda x: tf.cond(tf.constant(True), lambda: tf.square(x), lambda: tf.sub(x, one)) # pylint: enable=undefined-variable r = tf.while_loop(c, b, [v]) r = tf.gradients(r, v)[0] r = sess.run(r, feed_dict={v: 2.0}) self.assertAllClose(1024.0, r)
Example #22
Source File: stack_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def _testStackWhileSwap(self, use_gpu): with self.test_session(use_gpu=use_gpu): n = tf.constant(0) h = gen_data_flow_ops._stack(tf.float32, stack_name="foo") def c(x): return tf.less(x, 10) def b(x): with tf.control_dependencies([x]): a = tf.constant(np.ones(2000), dtype=tf.float32) v = gen_data_flow_ops._stack_push(h, a, swap_memory=True) with tf.control_dependencies([v]): return tf.add(x, 1) r = tf.while_loop(c, b, [n]) v = tf.constant(np.zeros(2000), dtype=tf.float32) def c1(x, y): return tf.greater(x, 0) def b1(x, y): nx = tf.sub(x, 1) ny = y + gen_data_flow_ops._stack_pop(h, tf.float32) return [nx, ny] rx, ry = tf.while_loop(c1, b1, [r, v], [r.get_shape(), tensor_shape.unknown_shape()]) self.assertAllClose(np.ones(2000) * 10.0, ry.eval())
Example #23
Source File: nn.py From dqa-net with Apache License 2.0 | 6 votes |
def softmax_with_base(shape, base_untiled, x, mask=None, name='sig'): if mask is not None: x += VERY_SMALL_NUMBER * (1.0 - mask) base_shape = shape[:-1] + [1] for _ in shape: base_untiled = tf.expand_dims(base_untiled, -1) base = tf.tile(base_untiled, base_shape) c_shape = shape[:-1] + [shape[-1] + 1] c = tf.concat(len(shape)-1, [base, x]) c_flat = tf.reshape(c, [reduce(mul, shape[:-1], 1), c_shape[-1]]) p_flat = tf.nn.softmax(c_flat) p_cat = tf.reshape(p_flat, c_shape) s_aug = tf.slice(p_cat, [0 for _ in shape], [i for i in shape[:-1]] + [1]) s = tf.squeeze(s_aug, [len(shape)-1]) sig = tf.sub(1.0, s, name="sig") p = tf.slice(p_cat, [0 for _ in shape[:-1]] + [1], shape) return sig, p
Example #24
Source File: svm.py From tensorflow_tmva with GNU General Public License v2.0 | 6 votes |
def cost(training, classes, inputs, kernel_type="gaussian", C=1, gamma=1): """Returns the kernelised cost to be minimised.""" beta = tf.Variable(tf.zeros([inputs, 1])) offset = tf.Variable(tf.zeros([1])) if kernel_type == "linear": kernel = linear_kernel(training, inputs, training, inputs) elif kernel_type == "gaussian": kernel = gaussian_kernel(training, inputs, training, inputs, gamma) x = tf.reshape(tf.div(tf.matmul(tf.matmul( beta, kernel, transpose_a=True), beta), tf.constant([2.0])), [1]) y = tf.sub(tf.ones([1]), tf.mul(classes, tf.add( tf.matmul(kernel, beta, transpose_a=True), offset))) z = tf.mul(tf.reduce_sum(tf.reduce_max( tf.concat(1, [y, tf.zeros_like(y)]), reduction_indices=1)), tf.constant([C], dtype=tf.float32)) cost = tf.add(x, z) return beta, offset, cost
Example #25
Source File: clock_model.py From deep-time-reading with MIT License | 6 votes |
def _activation_summary(x): """Helper to create summaries for activations. Creates a summary that provides a histogram of activations. Creates a summary that measure the sparsity of activations. Args: x: Tensor Returns: nothing """ # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training # session. This helps the clarity of presentation on tensorboard. tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name) tf.histogram_summary(tensor_name + '/activations', x) tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
Example #26
Source File: symbolic_functions.py From VDAIC2017 with MIT License | 6 votes |
def class_balanced_binary_class_cross_entropy(pred, label, name='cross_entropy_loss'): """ The class-balanced cross entropy loss for binary classification, as in `Holistically-Nested Edge Detection <http://arxiv.org/abs/1504.06375>`_. :param pred: size: b x ANYTHING. the predictions in [0,1]. :param label: size: b x ANYTHING. the ground truth in {0,1}. :returns: class-balanced binary classification cross entropy loss """ z = batch_flatten(pred) y = tf.cast(batch_flatten(label), tf.float32) count_neg = tf.reduce_sum(1. - y) count_pos = tf.reduce_sum(y) beta = count_neg / (count_neg + count_pos) eps = 1e-8 loss_pos = -beta * tf.reduce_mean(y * tf.log(tf.abs(z) + eps), 1) loss_neg = (1. - beta) * tf.reduce_mean((1. - y) * tf.log(tf.abs(1. - z) + eps), 1) cost = tf.sub(loss_pos, loss_neg) cost = tf.reduce_mean(cost, name=name) return cost
Example #27
Source File: baseline.py From hyperstar with MIT License | 6 votes |
def __init__(self, x_size, y_size, w_stddev, **kwargs): self.x_size = x_size self.y_size = y_size self.w_stddev = w_stddev self.X = tf.placeholder(tf.float32, shape=[None, self.x_size], name='X') self.Y = tf.placeholder(tf.float32, shape=[None, self.y_size], name='Y') self.Z = tf.placeholder(tf.float32, shape=[None, self.x_size], name='Z') self.W = tf.Variable(tf.random_normal((self.x_size, self.y_size), stddev=self.w_stddev), name='W') self.Y_hat = tf.matmul(self.X, self.W) self.Y_error = tf.sub(self.Y_hat, self.Y) self.Y_norm = self.l2_norm(self.Y_error) self.Y_loss = tf.nn.l2_loss(self.Y_norm) self.loss = self.Y_loss
Example #28
Source File: MM2CA.py From MultimodalDeepLearning with MIT License | 6 votes |
def calculatCA(_tp1, _tp2, size, _b_size): first = True tp1 = tf.split(0, _b_size, _tp1) tp2 = tf.split(0, _b_size, _tp2) for i in range(_b_size): input1 = tf.reshape(tp1[i], shape=[size, 1]) input2 = tf.reshape(tp2[i], shape=[size, 1]) upper = tf.matmul(tf.transpose(tf.sub(input1, tf.reduce_mean(input1))), tf.sub(input2, tf.reduce_mean(input2))) _tp1 = tf.reduce_sum(tf.mul(tf.sub(input1, tf.reduce_mean(input1)), tf.sub(input1, tf.reduce_mean(input1)))) _tp2 = tf.reduce_sum(tf.mul(tf.sub(input2, tf.reduce_mean(input2)), tf.sub(input2, tf.reduce_mean(input2)))) down = tf.sqrt(tf.mul(_tp1, _tp2)) factor = tf.abs(tf.div(upper, down)) if first: output = factor first = False else: output = tf.concat(1, [output, factor]) return tf.transpose(output) # Create model
Example #29
Source File: MM1CA.py From MultimodalDeepLearning with MIT License | 6 votes |
def calculatCA(_tp1, _tp2, size, _b_size): first = True tp1 = tf.split(0, _b_size, _tp1) tp2 = tf.split(0, _b_size, _tp2) for i in range(_b_size): input1 = tf.reshape(tp1[i], shape=[size, 1]) input2 = tf.reshape(tp2[i], shape=[size, 1]) upper = tf.matmul(tf.transpose(tf.sub(input1, tf.reduce_mean(input1))), tf.sub(input2, tf.reduce_mean(input2))) _tp1 = tf.reduce_sum(tf.mul(tf.sub(input1, tf.reduce_mean(input1)), tf.sub(input1, tf.reduce_mean(input1)))) _tp2 = tf.reduce_sum(tf.mul(tf.sub(input2, tf.reduce_mean(input2)), tf.sub(input2, tf.reduce_mean(input2)))) down = tf.sqrt(tf.mul(_tp1, _tp2)) factor = tf.abs(tf.div(upper, down)) if first: output = factor first = False else: output = tf.concat(1, [output, factor]) return tf.transpose(output) # Create model
Example #30
Source File: MM_RDN_1CA.py From MultimodalDeepLearning with MIT License | 6 votes |
def calculatCA(_tp1, _tp2, size, _b_size): first = True tp1 = tf.split(0, _b_size, _tp1) tp2 = tf.split(0, _b_size, _tp2) for i in range(_b_size): input1 = tf.reshape(tp1[i], shape=[size, 1]) input2 = tf.reshape(tp2[i], shape=[size, 1]) upper = tf.matmul(tf.transpose(tf.sub(input1, tf.reduce_mean(input1))), tf.sub(input2, tf.reduce_mean(input2))) _tp1 = tf.reduce_sum(tf.mul(tf.sub(input1, tf.reduce_mean(input1)), tf.sub(input1, tf.reduce_mean(input1)))) _tp2 = tf.reduce_sum(tf.mul(tf.sub(input2, tf.reduce_mean(input2)), tf.sub(input2, tf.reduce_mean(input2)))) down = tf.sqrt(tf.mul(_tp1, _tp2)) factor = tf.abs(tf.div(upper, down)) if first: output = factor first = False else: output = tf.concat(1, [output, factor]) return tf.transpose(output) # Create model