Python tensorflow.float64() Examples
The following are 30
code examples of tensorflow.float64().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: model.py From PathCon with MIT License | 7 votes |
def _get_neighbors_and_masks(self, relations, entity_pairs, train_edges): edges_list = [relations] masks = [] train_edges = tf.expand_dims(train_edges, -1) # [batch_size, 1] for i in range(self.context_hops): if i == 0: neighbor_entities = entity_pairs else: neighbor_entities = tf.reshape(tf.gather(self.edge2entities, edges_list[-1]), [self.batch_size, -1]) neighbor_edges = tf.reshape(tf.gather(self.entity2edges, neighbor_entities), [self.batch_size, -1]) edges_list.append(neighbor_edges) mask = neighbor_edges - train_edges # [batch_size, -1] mask = tf.cast(tf.cast(mask, tf.bool), tf.float64) # [batch_size, -1] masks.append(mask) return edges_list, masks
Example #2
Source File: parametric_GP.py From ParametricGP with MIT License | 6 votes |
def train(self): print("Total number of parameters: %d" % (self.hyp.shape[0])) X_tf = tf.placeholder(tf.float64) y_tf = tf.placeholder(tf.float64) hyp_tf = tf.Variable(self.hyp, dtype=tf.float64) train = self.likelihood(hyp_tf, X_tf, y_tf) init = tf.global_variables_initializer() self.sess.run(init) start_time = timeit.default_timer() for i in range(1,self.max_iter+1): # Fetch minibatch X_batch, y_batch = fetch_minibatch(self.X,self.y,self.N_batch) self.sess.run(train, {X_tf:X_batch, y_tf:y_batch}) if i % self.monitor_likelihood == 0: elapsed = timeit.default_timer() - start_time nlml = self.sess.run(self.nlml) print('Iteration: %d, NLML: %.2f, Time: %.2f' % (i, nlml, elapsed)) start_time = timeit.default_timer() self.hyp = self.sess.run(hyp_tf)
Example #3
Source File: model.py From PathCon with MIT License | 6 votes |
def _rnn(self, path_ids): path_ids = tf.reshape(path_ids, [self.batch_size * self.path_samples]) # [batch_size * path_samples] paths = tf.nn.embedding_lookup(self.id2path, path_ids) # [batch_size * path_samples, max_path_len] # [batch_size * path_samples, max_path_len, relation_dim] path_features = tf.nn.embedding_lookup(self.relation_features, paths) lengths = tf.nn.embedding_lookup(self.id2length, path_ids) # [batch_size * path_samples] cell = tf.nn.rnn_cell.LSTMCell(num_units=self.hidden_dim, name='basic_lstm_cell') initial_state = cell.zero_state(self.batch_size * self.path_samples, tf.float64) # [batch_size * path_samples, hidden_dim] _, last_state = tf.nn.dynamic_rnn(cell, path_features, sequence_length=lengths, initial_state=initial_state) self.W, self.b = self._get_weight_and_bias(self.hidden_dim, self.n_relations) output = tf.matmul(last_state.h, self.W) + self.b # [batch_size * path_samples, n_relations] output = tf.reshape(output, [self.batch_size, self.path_samples, self.n_relations]) return output
Example #4
Source File: model.py From PathCon with MIT License | 6 votes |
def _build_relation_feature(self): if self.feature_type == 'id': self.relation_dim = self.n_relations self.relation_features = tf.eye(self.n_relations, dtype=tf.float64) elif self.feature_type == 'bow': bow = np.load('../data/' + self.dataset + '/bow.npy') self.relation_dim = bow.shape[1] self.relation_features = tf.constant(bow, tf.float64) elif self.feature_type == 'bert': bert = np.load('../data/' + self.dataset + '/bert.npy') self.relation_dim = bert.shape[1] self.relation_features = tf.constant(bert, tf.float64) # the feature of the last relation (the null relation) is a zero vector self.relation_features = tf.concat([self.relation_features, tf.zeros([1, self.relation_dim], tf.float64)], axis=0, name='relation_features')
Example #5
Source File: gaussian_distribution.py From tf-example-models with Apache License 2.0 | 6 votes |
def initialize(self, dtype=tf.float64): if self.tf_mean is None: if self.mean is not None: self.tf_mean = tf.Variable(self.mean, dtype=dtype) else: self.tf_mean = tf.Variable(tf.cast(tf.fill([self.dims], 0.0), dtype)) if self.tf_covariance is None: if self.covariance is not None: self.tf_covariance = self.covariance else: self.tf_covariance = FullCovariance(self.dims) self.tf_covariance.initialize(dtype) if self.tf_ln2piD is None: self.tf_ln2piD = tf.constant(np.log(2 * np.pi) * self.dims, dtype=dtype)
Example #6
Source File: running_mean_std.py From HardRLWithYoutube with MIT License | 6 votes |
def __init__(self, epsilon=1e-4, shape=(), scope=''): sess = get_session() self._new_mean = tf.placeholder(shape=shape, dtype=tf.float64) self._new_var = tf.placeholder(shape=shape, dtype=tf.float64) self._new_count = tf.placeholder(shape=(), dtype=tf.float64) with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): self._mean = tf.get_variable('mean', initializer=np.zeros(shape, 'float64'), dtype=tf.float64) self._var = tf.get_variable('std', initializer=np.ones(shape, 'float64'), dtype=tf.float64) self._count = tf.get_variable('count', initializer=np.full((), epsilon, 'float64'), dtype=tf.float64) self.update_ops = tf.group([ self._var.assign(self._new_var), self._mean.assign(self._new_mean), self._count.assign(self._new_count) ]) sess.run(tf.variables_initializer([self._mean, self._var, self._count])) self.sess = sess self._set_mean_var_count()
Example #7
Source File: tf_transformer_test.py From spark-deep-learning with Apache License 2.0 | 6 votes |
def test_graph_array_types(self): test_dtypes = [(tf.int32, ArrayType(IntegerType()), np.int32), (tf.int64, ArrayType(LongType()), np.int64), (tf.float32, ArrayType(FloatType()), np.float32), (tf.float64, ArrayType(DoubleType()), np.float64)] for tf_dtype, spark_dtype, np_type in test_dtypes: transformer = _build_transformer(lambda session: TFInputGraph.fromGraph(session.graph, session, [_tensor_input_name], [_tensor_output_name]), tf_dtype) gin = transformer.getTFInputGraph() local_features = _build_local_features(np_type) expected = _get_expected_result(gin, local_features) schema = StructType([StructField('inputCol', spark_dtype)]) dataset = self.session.createDataFrame(local_features, schema) _check_transformer_output(transformer, dataset, expected) # The name of the input tensor
Example #8
Source File: running_mean_std.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 6 votes |
def __init__(self, epsilon=1e-4, shape=(), scope=''): sess = get_session() self._new_mean = tf.placeholder(shape=shape, dtype=tf.float64) self._new_var = tf.placeholder(shape=shape, dtype=tf.float64) self._new_count = tf.placeholder(shape=(), dtype=tf.float64) with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): self._mean = tf.get_variable('mean', initializer=np.zeros(shape, 'float64'), dtype=tf.float64) self._var = tf.get_variable('std', initializer=np.ones(shape, 'float64'), dtype=tf.float64) self._count = tf.get_variable('count', initializer=np.full((), epsilon, 'float64'), dtype=tf.float64) self.update_ops = tf.group([ self._var.assign(self._new_var), self._mean.assign(self._new_mean), self._count.assign(self._new_count) ]) sess.run(tf.variables_initializer([self._mean, self._var, self._count])) self.sess = sess self._set_mean_var_count()
Example #9
Source File: model.py From tensorflow-wavenet with MIT License | 6 votes |
def predict_proba(self, waveform, global_condition=None, name='wavenet'): '''Computes the probability distribution of the next sample based on all samples in the input waveform. If you want to generate audio by feeding the output of the network back as an input, see predict_proba_incremental for a faster alternative.''' with tf.name_scope(name): if self.scalar_input: encoded = tf.cast(waveform, tf.float32) encoded = tf.reshape(encoded, [-1, 1]) else: encoded = self._one_hot(waveform) gc_embedding = self._embed_gc(global_condition) raw_output = self._create_network(encoded, gc_embedding) out = tf.reshape(raw_output, [-1, self.quantization_channels]) # Cast to float64 to avoid bug in TensorFlow proba = tf.cast( tf.nn.softmax(tf.cast(out, tf.float64)), tf.float32) last = tf.slice( proba, [tf.shape(proba)[0] - 1, 0], [1, self.quantization_channels]) return tf.reshape(last, [-1])
Example #10
Source File: model.py From tensorflow-wavenet with MIT License | 6 votes |
def predict_proba_incremental(self, waveform, global_condition=None, name='wavenet'): '''Computes the probability distribution of the next sample incrementally, based on a single sample and all previously passed samples.''' if self.filter_width > 2: raise NotImplementedError("Incremental generation does not " "support filter_width > 2.") if self.scalar_input: raise NotImplementedError("Incremental generation does not " "support scalar input yet.") with tf.name_scope(name): encoded = tf.one_hot(waveform, self.quantization_channels) encoded = tf.reshape(encoded, [-1, self.quantization_channels]) gc_embedding = self._embed_gc(global_condition) raw_output = self._create_generator(encoded, gc_embedding) out = tf.reshape(raw_output, [-1, self.quantization_channels]) proba = tf.cast( tf.nn.softmax(tf.cast(out, tf.float64)), tf.float32) last = tf.slice( proba, [tf.shape(proba)[0] - 1, 0], [1, self.quantization_channels]) return tf.reshape(last, [-1])
Example #11
Source File: mixture_model.py From tf-example-models with Apache License 2.0 | 6 votes |
def __init__(self, data, components, cluster=None, dtype=tf.float64): if isinstance(data, np.ndarray): data = [data] self.data = data self.dims = sum(d.shape[1] for d in data) self.num_points = data[0].shape[0] self.components = components self.tf_graph = tf.Graph() self._initialize_workers(cluster) self._initialize_component_mapping() self._initialize_data_sources() self._initialize_variables(dtype) self._initialize_graph(dtype)
Example #12
Source File: py_func_batch_env.py From fine-lm with MIT License | 6 votes |
def simulate(self, action): """Step the batch of environments. The results of the step can be accessed from the variables defined below. Args: action: Tensor holding the batch of actions to apply. Returns: Operation. """ with tf.name_scope('environment/simulate'): if action.dtype in (tf.float16, tf.float32, tf.float64): action = tf.check_numerics(action, 'action') observ_dtype = utils.parse_dtype(self._batch_env.observation_space) observ, reward, done = tf.py_func( lambda a: self._batch_env.step(a)[:3], [action], [observ_dtype, tf.float32, tf.bool], name='step') observ = tf.check_numerics(observ, 'observ') reward = tf.check_numerics(reward, 'reward') reward.set_shape((len(self),)) done.set_shape((len(self),)) with tf.control_dependencies([self._observ.assign(observ)]): return tf.identity(reward), tf.identity(done)
Example #13
Source File: in_graph_batch_env.py From soccer-matlab with BSD 2-Clause "Simplified" License | 6 votes |
def simulate(self, action): """Step the batch of environments. The results of the step can be accessed from the variables defined below. Args: action: Tensor holding the batch of actions to apply. Returns: Operation. """ with tf.name_scope('environment/simulate'): if action.dtype in (tf.float16, tf.float32, tf.float64): action = tf.check_numerics(action, 'action') observ_dtype = self._parse_dtype(self._batch_env.observation_space) observ, reward, done = tf.py_func( lambda a: self._batch_env.step(a)[:3], [action], [observ_dtype, tf.float32, tf.bool], name='step') observ = tf.check_numerics(observ, 'observ') reward = tf.check_numerics(reward, 'reward') return tf.group( self._observ.assign(observ), self._action.assign(action), self._reward.assign(reward), self._done.assign(done))
Example #14
Source File: tensorFactorisation.py From decompose with MIT License | 6 votes |
def llhIndividual(self, X: Tensor) -> Tensor: """Log likelihood of the parameters given data `X`.""" # log likelihood of the noise llhRes = self.likelihood.llh(self.U, X) llh = llhRes # log likelihood of the factors llhU = [] llhUfk = [] U = list(self.U) for f, postUf in enumerate(self.postU): U = self.rescale(U=U, fNonUnit=f) UfT = tf.transpose(U[f]) llhUfk.append(tf.reduce_sum(postUf.prior.llh(UfT), axis=0)) llhUf = tf.reduce_sum(postUf.prior.llh(UfT)) llh = llh + llhUf llhU.append(llhUf) llh = tf.cast(llh, tf.float64) return(llh, llhRes, llhU, llhUfk)
Example #15
Source File: in_graph_batch_env.py From soccer-matlab with BSD 2-Clause "Simplified" License | 6 votes |
def simulate(self, action): """Step the batch of environments. The results of the step can be accessed from the variables defined below. Args: action: Tensor holding the batch of actions to apply. Returns: Operation. """ with tf.name_scope('environment/simulate'): if action.dtype in (tf.float16, tf.float32, tf.float64): action = tf.check_numerics(action, 'action') observ_dtype = self._parse_dtype(self._batch_env.observation_space) observ, reward, done = tf.py_func( lambda a: self._batch_env.step(a)[:3], [action], [observ_dtype, tf.float32, tf.bool], name='step') observ = tf.check_numerics(observ, 'observ') reward = tf.check_numerics(reward, 'reward') return tf.group( self._observ.assign(observ), self._action.assign(action), self._reward.assign(reward), self._done.assign(done))
Example #16
Source File: running_mean_std.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 6 votes |
def __init__(self, epsilon=1e-4, shape=(), scope=''): sess = get_session() self._new_mean = tf.placeholder(shape=shape, dtype=tf.float64) self._new_var = tf.placeholder(shape=shape, dtype=tf.float64) self._new_count = tf.placeholder(shape=(), dtype=tf.float64) with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): self._mean = tf.get_variable('mean', initializer=np.zeros(shape, 'float64'), dtype=tf.float64) self._var = tf.get_variable('std', initializer=np.ones(shape, 'float64'), dtype=tf.float64) self._count = tf.get_variable('count', initializer=np.full((), epsilon, 'float64'), dtype=tf.float64) self.update_ops = tf.group([ self._var.assign(self._new_var), self._mean.assign(self._new_mean), self._count.assign(self._new_count) ]) sess.run(tf.variables_initializer([self._mean, self._var, self._count])) self.sess = sess self._set_mean_var_count()
Example #17
Source File: accountant.py From DOTA_models with Apache License 2.0 | 6 votes |
def __init__(self, total_examples, moment_orders=32): """Initialize a MomentsAccountant. Args: total_examples: total number of examples. moment_orders: the order of moments to keep. """ assert total_examples > 0 self._total_examples = total_examples self._moment_orders = (moment_orders if isinstance(moment_orders, (list, tuple)) else range(1, moment_orders + 1)) self._max_moment_order = max(self._moment_orders) assert self._max_moment_order < 100, "The moment order is too large." self._log_moments = [tf.Variable(numpy.float64(0.0), trainable=False, name=("log_moments-%d" % moment_order)) for moment_order in self._moment_orders]
Example #18
Source File: accountant.py From DOTA_models with Apache License 2.0 | 6 votes |
def get_privacy_spent(self, sess, target_eps=None): """Report the spending so far. Args: sess: the session to run the tensor. target_eps: the target epsilon. Unused. Returns: the list containing a single EpsDelta, with values as Python floats (as opposed to numpy.float64). This is to be consistent with MomentAccountant which can return a list of (eps, delta) pair. """ # pylint: disable=unused-argument unused_target_eps = target_eps eps_squared_sum, delta_sum = sess.run([self._eps_squared_sum, self._delta_sum]) return [EpsDelta(math.sqrt(eps_squared_sum), float(delta_sum))]
Example #19
Source File: univariate.py From zhusuan with MIT License | 6 votes |
def __init__(self, logits, dtype=tf.int32, group_ndims=0, **kwargs): self._logits = tf.convert_to_tensor(logits) param_dtype = assert_same_dtype_in( [(self._logits, 'Categorical.logits')], [tf.float32, tf.float64]) allowed_dtypes = [tf.float32, tf.float64, tf.int32, tf.int64] assert_dtype_in_dtypes(dtype, allowed_dtypes) self._logits = assert_rank_at_least_one( self._logits, 'Categorical.logits') self._n_categories = get_shape_at(self._logits, -1) super(Categorical, self).__init__( dtype=dtype, param_dtype=param_dtype, is_continuous=False, is_reparameterized=False, group_ndims=group_ndims, **kwargs)
Example #20
Source File: neural_programmer.py From DOTA_models with Apache License 2.0 | 6 votes |
def __init__(self): global FLAGS self.FLAGS = FLAGS self.unk_token = "UNK" self.entry_match_token = "entry_match" self.column_match_token = "column_match" self.dummy_token = "dummy_token" self.tf_data_type = {} self.tf_data_type["double"] = tf.float64 self.tf_data_type["float"] = tf.float32 self.np_data_type = {} self.np_data_type["double"] = np.float64 self.np_data_type["float"] = np.float32 self.operations_set = ["count"] + [ "prev", "next", "first_rs", "last_rs", "group_by_max", "greater", "lesser", "geq", "leq", "max", "min", "word-match" ] + ["reset_select"] + ["print"] self.word_ids = {} self.reverse_word_ids = {} self.word_count = {} self.random = Random(FLAGS.python_seed)
Example #21
Source File: isotropic_covariance.py From tf-example-models with Apache License 2.0 | 6 votes |
def initialize(self, dtype=tf.float64): if self.tf_variance_scalar is None: if self.scalar is not None: self.tf_variance_scalar = tf.Variable(self.scalar, dtype=dtype) else: self.tf_variance_scalar = tf.Variable(1.0, dtype=dtype) if self.has_prior is None: if self.prior is not None: self.has_prior = True self.tf_alpha = tf.constant(self.prior["alpha"], dtype=dtype) self.tf_beta = tf.constant(self.prior["beta"], dtype=dtype) else: self.has_prior = False self.tf_dims = tf.constant(self.dims, dtype=dtype)
Example #22
Source File: mpi_running_mean_std.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 5 votes |
def update(self, x): x = x.astype('float64') n = int(np.prod(self.shape)) totalvec = np.zeros(n*2+1, 'float64') addvec = np.concatenate([x.sum(axis=0).ravel(), np.square(x).sum(axis=0).ravel(), np.array([len(x)],dtype='float64')]) MPI.COMM_WORLD.Allreduce(addvec, totalvec, op=MPI.SUM) self.incfiltparams(totalvec[0:n].reshape(self.shape), totalvec[n:2*n].reshape(self.shape), totalvec[2*n])
Example #23
Source File: running_mean_std.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 5 votes |
def __init__(self, epsilon=1e-4, shape=()): self.mean = np.zeros(shape, 'float64') self.var = np.ones(shape, 'float64') self.count = epsilon
Example #24
Source File: running_mean_std.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 5 votes |
def __init__(self, epsilon=1e-4, shape=()): self.mean = np.zeros(shape, 'float64') self.var = np.ones(shape, 'float64') self.count = epsilon
Example #25
Source File: mpi_running_mean_std.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 5 votes |
def update(self, x): x = x.astype('float64') n = int(np.prod(self.shape)) totalvec = np.zeros(n*2+1, 'float64') addvec = np.concatenate([x.sum(axis=0).ravel(), np.square(x).sum(axis=0).ravel(), np.array([len(x)],dtype='float64')]) MPI.COMM_WORLD.Allreduce(addvec, totalvec, op=MPI.SUM) self.incfiltparams(totalvec[0:n].reshape(self.shape), totalvec[n:2*n].reshape(self.shape), totalvec[2*n])
Example #26
Source File: operations_test.py From tensorflow_constrained_optimization with Apache License 2.0 | 5 votes |
def test_upper_bound_raises_on_tensor(self): """Make sure that upper_bound() raises when given a non-Expression.""" value1 = 3.1 value2 = 2.7 tensor1 = tf.constant(value1, dtype=tf.float32) expression2 = operations.wrap_rate(tf.constant(value2, dtype=tf.float64)) # List element is a Tensor, instead of an Expression. with self.assertRaises(TypeError): operations.upper_bound([tensor1, expression2])
Example #27
Source File: ops.py From basenji with Apache License 2.0 | 5 votes |
def _per_target_mean(values, weights, name='per-target-mean'): """Compute weighted mean across all but final dimension. Args: values: [..., num_targets] Tensor weights: Tensor. Either the same shape as values or broadcastable to it. name: string Returns: tuple containing tf.metrics-compatible value op and update_op. The value_op has shape [num_targets]. """ # First, reduce over all but the final dimension values = tf.convert_to_tensor(values) weights = tf.convert_to_tensor(weights) weights_dtype = tf.float64 if values.dtype == tf.float64 else tf.float32 weights = tf.cast(weights, weights_dtype) reduction_axes = list(range(values.shape.ndims - 1)) reduced_weights = tf.reduce_mean(weights, axis=reduction_axes) reduced_weighted_values = tf.reduce_mean( values * weights, axis=reduction_axes) return tf.metrics.mean_tensor(reduced_weighted_values * (1. / reduced_weights), reduced_weights)
Example #28
Source File: mpi_running_mean_std.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 5 votes |
def __init__(self, epsilon=1e-2, shape=()): self._sum = tf.get_variable( dtype=tf.float64, shape=shape, initializer=tf.constant_initializer(0.0), name="runningsum", trainable=False) self._sumsq = tf.get_variable( dtype=tf.float64, shape=shape, initializer=tf.constant_initializer(epsilon), name="runningsumsq", trainable=False) self._count = tf.get_variable( dtype=tf.float64, shape=(), initializer=tf.constant_initializer(epsilon), name="count", trainable=False) self.shape = shape self.mean = tf.to_float(self._sum / self._count) self.std = tf.sqrt( tf.maximum( tf.to_float(self._sumsq / self._count) - tf.square(self.mean) , 1e-2 )) newsum = tf.placeholder(shape=self.shape, dtype=tf.float64, name='sum') newsumsq = tf.placeholder(shape=self.shape, dtype=tf.float64, name='var') newcount = tf.placeholder(shape=[], dtype=tf.float64, name='count') self.incfiltparams = U.function([newsum, newsumsq, newcount], [], updates=[tf.assign_add(self._sum, newsum), tf.assign_add(self._sumsq, newsumsq), tf.assign_add(self._count, newcount)])
Example #29
Source File: running_mean_std.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 5 votes |
def __init__(self, epsilon=1e-4, shape=()): self.mean = np.zeros(shape, 'float64') self.var = np.ones(shape, 'float64') self.count = epsilon
Example #30
Source File: mpi_running_mean_std.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 5 votes |
def __init__(self, epsilon=1e-2, shape=()): self._sum = tf.get_variable( dtype=tf.float64, shape=shape, initializer=tf.constant_initializer(0.0), name="runningsum", trainable=False) self._sumsq = tf.get_variable( dtype=tf.float64, shape=shape, initializer=tf.constant_initializer(epsilon), name="runningsumsq", trainable=False) self._count = tf.get_variable( dtype=tf.float64, shape=(), initializer=tf.constant_initializer(epsilon), name="count", trainable=False) self.shape = shape self.mean = tf.to_float(self._sum / self._count) self.std = tf.sqrt( tf.maximum( tf.to_float(self._sumsq / self._count) - tf.square(self.mean) , 1e-2 )) newsum = tf.placeholder(shape=self.shape, dtype=tf.float64, name='sum') newsumsq = tf.placeholder(shape=self.shape, dtype=tf.float64, name='var') newcount = tf.placeholder(shape=[], dtype=tf.float64, name='count') self.incfiltparams = U.function([newsum, newsumsq, newcount], [], updates=[tf.assign_add(self._sum, newsum), tf.assign_add(self._sumsq, newsumsq), tf.assign_add(self._count, newcount)])