Python tensorflow.matrix_inverse() Examples
The following are 30
code examples of tensorflow.matrix_inverse().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: linear_regression.py From multilabel-image-classification-tensorflow with MIT License | 6 votes |
def solve_ridge(x, y, ridge_factor): with tf.name_scope("solve_ridge"): # Added a column of ones to the end of the feature matrix for bias A = tf.concat([x, tf.ones((x.shape.as_list()[0], 1))], axis=1) # Analytic solution for the ridge regression loss inv_target = tf.matmul(A, A, transpose_a=True) np_diag_penalty = ridge_factor * np.ones( A.shape.as_list()[1], dtype="float32") # Remove penalty on bias component of weights np_diag_penalty[-1] = 0. diag_penalty = tf.constant(np_diag_penalty) inv_target += tf.diag(diag_penalty) inv = tf.matrix_inverse(inv_target) w = tf.matmul(inv, tf.matmul(A, y, transpose_a=True)) return w
Example #2
Source File: components.py From strsum with Apache License 2.0 | 6 votes |
def get_matrix_tree(r, A): L = tf.reduce_sum(A, 1) L = tf.matrix_diag(L) L = L - A r_diag = tf.matrix_diag(r) LL = L + r_diag LL_inv = tf.matrix_inverse(LL) #batch_l, doc_l, doc_l LL_inv_diag_ = tf.matrix_diag_part(LL_inv) d0 = tf.multiply(r, LL_inv_diag_) LL_inv_diag = tf.expand_dims(LL_inv_diag_, 2) tmp1 = tf.multiply(A, tf.matrix_transpose(LL_inv_diag)) tmp2 = tf.multiply(A, tf.matrix_transpose(LL_inv)) d = tmp1 - tmp2 d = tf.concat([tf.expand_dims(d0,[1]), d], 1) return d
Example #3
Source File: problem_generator.py From Gun-Detector with Apache License 2.0 | 6 votes |
def objective(self, parameters, data=None, labels=None): theta_a = parameters[0] theta_b = parameters[1] # Compute theta_c from theta_a and theta_b. p = tf.matmul(self.a, theta_a) * tf.matmul(self.b, theta_b) p_trans = tf.transpose(p, name="p_trans") p_inv = tf.matmul( tf.matrix_inverse(tf.matmul(p_trans, p)), p_trans, name="p_inv") theta_c = tf.matmul(p_inv, self.c, name="theta_c") # Compute the "predicted" value of c. c_hat = tf.matmul(p, theta_c, name="c_hat") # Compute the loss (sum of squared errors). loss = tf.reduce_sum((c_hat - self.c)**2, name="loss") return loss
Example #4
Source File: layers.py From face_landmark_dnn with MIT License | 6 votes |
def LandmarkTransformLayer(Landmark, Param, Inverse=False): ''' Landmark: [N, N_LANDMARK x 2] Param: [N, 6] return: [N, N_LANDMARK x 2] ''' A = tf.reshape(Param[:, 0:4], [-1, 2, 2]) T = tf.reshape(Param[:, 4:6], [-1, 1, 2]) Landmark = tf.reshape(Landmark, [-1, N_LANDMARK, 2]) if Inverse: A = tf.matrix_inverse(A) T = tf.matmul(-T, A) return tf.reshape(tf.matmul(Landmark, A) + T, [-1, N_LANDMARK * 2])
Example #5
Source File: problem_generator.py From yolo_v2 with Apache License 2.0 | 6 votes |
def objective(self, parameters, data=None, labels=None): theta_a = parameters[0] theta_b = parameters[1] # Compute theta_c from theta_a and theta_b. p = tf.matmul(self.a, theta_a) * tf.matmul(self.b, theta_b) p_trans = tf.transpose(p, name="p_trans") p_inv = tf.matmul( tf.matrix_inverse(tf.matmul(p_trans, p)), p_trans, name="p_inv") theta_c = tf.matmul(p_inv, self.c, name="theta_c") # Compute the "predicted" value of c. c_hat = tf.matmul(p, theta_c, name="c_hat") # Compute the loss (sum of squared errors). loss = tf.reduce_sum((c_hat - self.c)**2, name="loss") return loss
Example #6
Source File: geo_utils.py From DeepMatchVO with MIT License | 6 votes |
def pixel2cam(depth, pixel_coords, intrinsics, is_homogeneous=True): """Transforms coordinates in the pixel frame to the camera frame. Args: depth: [batch, height, width] pixel_coords: homogeneous pixel coordinates [batch, 3, height, width] intrinsics: camera intrinsics [batch, 3, 3] is_homogeneous: return in homogeneous coordinates Returns: Coords in the camera frame [batch, 3 (4 if homogeneous), height, width] """ batch, height, width = depth.get_shape().as_list() depth = tf.reshape(depth, [batch, 1, -1]) pixel_coords = tf.reshape(pixel_coords, [batch, 3, -1]) cam_coords = tf.matmul(tf.matrix_inverse(intrinsics), pixel_coords) * depth if is_homogeneous: ones = tf.ones([batch, 1, height*width]) cam_coords = tf.concat([cam_coords, ones], axis=1) cam_coords = tf.reshape(cam_coords, [batch, -1, height, width]) return cam_coords
Example #7
Source File: gaussian_sampler_example.py From hamiltonian-monte-carlo with Apache License 2.0 | 6 votes |
def gaussian_log_posterior(x, covariance): """Evaluate the unormalized log posterior from a zero-mean Gaussian distribution, with the specifed covariance matrix Parameters ---------- x : tf.Variable Sample ~ target distribution covariance : tf.Variable N x N Covariance matrix for N-dim Gaussian For diagonal - [[sigma_1^2, 0], [0, sigma_2^2]] Returns ------- logp : float Unormalized log p(x) """ covariance_inverse = tf.matrix_inverse(covariance) xA = tf.matmul(x, covariance_inverse) xAx = tf.matmul(xA, tf.transpose(x)) return xAx / 2.0
Example #8
Source File: transform.py From 3D-point-cloud-generation with MIT License | 6 votes |
def fuse3D(opt,XYZ,maskLogit,fuseTrans): # [B,H,W,3V],[B,H,W,V] with tf.name_scope("transform_fuse3D"): XYZ = tf.transpose(XYZ,perm=[0,3,1,2]) # [B,3V,H,W] maskLogit = tf.transpose(maskLogit,perm=[0,3,1,2]) # [B,V,H,W] # 2D to 3D coordinate transformation invKhom = np.linalg.inv(opt.Khom2Dto3D) invKhomTile = np.tile(invKhom,[opt.batchSize,opt.outViewN,1,1]) # viewpoint rigid transformation q_view = fuseTrans t_view = np.tile([0,0,-opt.renderDepth],[opt.outViewN,1]).astype(np.float32) RtHom_view = transParamsToHomMatrix(q_view,t_view) RtHomTile_view = tf.tile(tf.expand_dims(RtHom_view,0),[opt.batchSize,1,1,1]) invRtHomTile_view = tf.matrix_inverse(RtHomTile_view) # effective transformation RtHomTile = tf.matmul(invRtHomTile_view,invKhomTile) # [B,V,4,4] RtTile = RtHomTile[:,:,:3,:] # [B,V,3,4] # transform depth stack ML = tf.reshape(maskLogit,[opt.batchSize,1,-1]) # [B,1,VHW] XYZhom = get3DhomCoord(XYZ,opt) # [B,V,4,HW] XYZid = tf.matmul(RtTile,XYZhom) # [B,V,3,HW] # fuse point clouds XYZid = tf.reshape(tf.transpose(XYZid,perm=[0,2,1,3]),[opt.batchSize,3,-1]) # [B,3,VHW] return XYZid,ML # [B,1,VHW] # build transformer (render 2D depth)
Example #9
Source File: linear_regression.py From Gun-Detector with Apache License 2.0 | 6 votes |
def solve_ridge(x, y, ridge_factor): with tf.name_scope("solve_ridge"): # Added a column of ones to the end of the feature matrix for bias A = tf.concat([x, tf.ones((x.shape.as_list()[0], 1))], axis=1) # Analytic solution for the ridge regression loss inv_target = tf.matmul(A, A, transpose_a=True) np_diag_penalty = ridge_factor * np.ones( A.shape.as_list()[1], dtype="float32") # Remove penalty on bias component of weights np_diag_penalty[-1] = 0. diag_penalty = tf.constant(np_diag_penalty) inv_target += tf.diag(diag_penalty) inv = tf.matrix_inverse(inv_target) w = tf.matmul(inv, tf.matmul(A, y, transpose_a=True)) return w
Example #10
Source File: matrix_inverse_op_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def _verifyInverse(self, x): for np_type in [np.float32, np.float64]: for adjoint in False, True: y = x.astype(np_type) with self.test_session(): # Verify that x^{-1} * x == Identity matrix. inv = tf.matrix_inverse(y, adjoint=adjoint) tf_ans = tf.batch_matmul(inv, y, adj_y=adjoint) np_ans = np.identity(y.shape[-1]) if x.ndim > 2: tiling = list(y.shape) tiling[-2:] = [1, 1] np_ans = np.tile(np_ans, tiling) out = tf_ans.eval() self.assertAllClose(np_ans, out) self.assertShapeEqual(y, tf_ans)
Example #11
Source File: homography.py From stereo-magnification with Apache License 2.0 | 6 votes |
def inv_homography(k_s, k_t, rot, t, n_hat, a): """Computes inverse homography matrix between two cameras via a plane. Args: k_s: intrinsics for source cameras, [..., 3, 3] matrices k_t: intrinsics for target cameras, [..., 3, 3] matrices rot: relative rotations between source and target, [..., 3, 3] matrices t: [..., 3, 1], translations from source to target camera. Mapping a 3D point p from source to target is accomplished via rot * p + t. n_hat: [..., 1, 3], plane normal w.r.t source camera frame a: [..., 1, 1], plane equation displacement Returns: homography: [..., 3, 3] inverse homography matrices (homographies mapping pixel coordinates from target to source). """ with tf.name_scope('inv_homography'): rot_t = tf.matrix_transpose(rot) k_t_inv = tf.matrix_inverse(k_t, name='k_t_inv') denom = a - tf.matmul(tf.matmul(n_hat, rot_t), t) numerator = tf.matmul(tf.matmul(tf.matmul(rot_t, t), n_hat), rot_t) inv_hom = tf.matmul( tf.matmul(k_s, rot_t + divide_safe(numerator, denom)), k_t_inv, name='inv_hom') return inv_hom
Example #12
Source File: glow.py From WaveGlow with MIT License | 6 votes |
def invertible1x1Conv(z, n_channels, forward=True, name='inv1x1conv'): with tf.variable_scope(name): shape = tf.shape(z) batch_size, length, channels = shape[0], shape[1], shape[2] # sample a random orthogonal matrix to initialize weight W_init = np.linalg.qr(np.random.randn(n_channels, n_channels))[0].astype('float32') W = create_variable_init('W', initializer=W_init) # compute log determinant det = tf.log(tf.abs(tf.cast(tf.matrix_determinant(tf.cast(W, tf.float64)), tf.float32))) logdet = det * tf.cast(batch_size * length, 'float32') if forward: _W = tf.reshape(W, [1, n_channels, n_channels]) z = tf.nn.conv1d(z, _W, stride=1, padding='SAME') return z, logdet else: _W = tf.matrix_inverse(W) _W = tf.reshape(_W, [1, n_channels, n_channels]) z = tf.nn.conv1d(z, _W, stride=1, padding='SAME') return z
Example #13
Source File: problem_generator.py From object_detection_kitti with Apache License 2.0 | 6 votes |
def objective(self, parameters, data=None, labels=None): theta_a = parameters[0] theta_b = parameters[1] # Compute theta_c from theta_a and theta_b. p = tf.matmul(self.a, theta_a) * tf.matmul(self.b, theta_b) p_trans = tf.transpose(p, name="p_trans") p_inv = tf.matmul( tf.matrix_inverse(tf.matmul(p_trans, p)), p_trans, name="p_inv") theta_c = tf.matmul(p_inv, self.c, name="theta_c") # Compute the "predicted" value of c. c_hat = tf.matmul(p, theta_c, name="c_hat") # Compute the loss (sum of squared errors). loss = tf.reduce_sum((c_hat - self.c)**2, name="loss") return loss
Example #14
Source File: stneuronet.py From STNeuroNet with Apache License 2.0 | 6 votes |
def layer_op(self, input_tensor): sz = input_tensor.get_shape().as_list() grid_warper = AffineGridWarperLayer(sz[1:-1], sz[1:-1]) resampler = ResamplerLayer(interpolation=self.interpolation, boundary=self.boundary) relative_transform = self.transform_func(sz[0]) to_relative=tf.tile([[[2./(sz[1]-1), 0., 0., -1.], [0., 2. / (sz[2] - 1), 0., -1.], [0., 0., 2. / (sz[3] - 1), -1.], [0., 0., 0., 1.]]],[sz[0],1,1]) from_relative=tf.matrix_inverse(to_relative) voxel_transform = tf.matmul(from_relative, tf.matmul(relative_transform,to_relative)) warp_parameters = tf.reshape(voxel_transform[:, 0:3, 0:4], [sz[0], 12]) grid = grid_warper(warp_parameters) return resampler(input_tensor,grid)
Example #15
Source File: problem_generator.py From object_detection_with_tensorflow with MIT License | 6 votes |
def objective(self, parameters, data=None, labels=None): theta_a = parameters[0] theta_b = parameters[1] # Compute theta_c from theta_a and theta_b. p = tf.matmul(self.a, theta_a) * tf.matmul(self.b, theta_b) p_trans = tf.transpose(p, name="p_trans") p_inv = tf.matmul( tf.matrix_inverse(tf.matmul(p_trans, p)), p_trans, name="p_inv") theta_c = tf.matmul(p_inv, self.c, name="theta_c") # Compute the "predicted" value of c. c_hat = tf.matmul(p, theta_c, name="c_hat") # Compute the loss (sum of squared errors). loss = tf.reduce_sum((c_hat - self.c)**2, name="loss") return loss
Example #16
Source File: utils.py From GeoNet with MIT License | 6 votes |
def pixel2cam(depth, pixel_coords, intrinsics, is_homogeneous=True): """Transforms coordinates in the pixel frame to the camera frame. Args: depth: [batch, height, width] pixel_coords: homogeneous pixel coordinates [batch, 3, height, width] intrinsics: camera intrinsics [batch, 3, 3] is_homogeneous: return in homogeneous coordinates Returns: Coords in the camera frame [batch, 3 (4 if homogeneous), height, width] """ batch, height, width = depth.get_shape().as_list() depth = tf.reshape(depth, [batch, 1, -1]) pixel_coords = tf.reshape(pixel_coords, [batch, 3, -1]) cam_coords = tf.matmul(tf.matrix_inverse(intrinsics), pixel_coords) * depth if is_homogeneous: ones = tf.ones([batch, 1, height*width]) cam_coords = tf.concat([cam_coords, ones], axis=1) cam_coords = tf.reshape(cam_coords, [batch, -1, height, width]) return cam_coords
Example #17
Source File: LEGOLearner.py From LEGO with MIT License | 6 votes |
def get_multi_scale_intrinsics(self, raw_cam_mat, num_scales): proj_cam2pix = [] # Scale the intrinsics accordingly for each scale for s in range(num_scales): fx = raw_cam_mat[0,0]/(2 ** s) fy = raw_cam_mat[1,1]/(2 ** s) cx = raw_cam_mat[0,2]/(2 ** s) cy = raw_cam_mat[1,2]/(2 ** s) r1 = tf.stack([fx, 0, cx]) r2 = tf.stack([0, fy, cy]) r3 = tf.constant([0.,0.,1.]) proj_cam2pix.append(tf.stack([r1, r2, r3])) proj_cam2pix = tf.stack(proj_cam2pix) proj_pix2cam = tf.matrix_inverse(proj_cam2pix) proj_cam2pix.set_shape([num_scales,3,3]) proj_pix2cam.set_shape([num_scales,3,3]) return proj_cam2pix, proj_pix2cam
Example #18
Source File: projection.py From layered-scene-inference with Apache License 2.0 | 6 votes |
def forward_projection_matrix(k_s, k_t, rot, t): """Projection matrix for transforming a src pixel coordinates to target frame. Args: k_s: intrinsics for source cameras, are [...] X 3 X 3 matrices k_t: intrinsics for target cameras, are [...] X 3 X 3 matrices rot: relative rotation from source to target, are [...] X 3 X 3 matrices t: [...] X 3 X 1 translations from source to target camera Returns: transform: [...] X 4 X 4 projection matrix """ with tf.name_scope('forward_projection_matrix'): k_s_inv = tf.matrix_inverse(k_s, name='k_s_inv') return tf.matmul( pad_intrinsic(k_t), tf.matmul(pad_extrinsic(rot, t), pad_intrinsic(k_s_inv)))
Example #19
Source File: projection.py From layered-scene-inference with Apache License 2.0 | 6 votes |
def inverse_projection_matrix(k_s, k_t, rot, t): """Projection matrix for transforming a trg pixel coordinates to src frame. Args: k_s: intrinsics for source cameras, are [...] X 3 X 3 matrices k_t: intrinsics for target cameras, are [...] X 3 X 3 matrices rot: relative rotation from source to target, are [...] X 3 X 3 matrices t: [...] X 3 X 1 translations from source to target camera Returns: transform: [...] X 4 X 4 projection matrix """ with tf.name_scope('inverse_projection_matrix'): k_t_inv = tf.matrix_inverse(k_t, name='k_t_inv') rot_inv = nn_helpers.transpose(rot) t_inv = -1 * tf.matmul(rot_inv, t) return tf.matmul( pad_intrinsic(k_s), tf.matmul(pad_extrinsic(rot_inv, t_inv), pad_intrinsic(k_t_inv)))
Example #20
Source File: homography.py From layered-scene-inference with Apache License 2.0 | 6 votes |
def inv_homography(k_s, k_t, rot, t, n_hat, a): """Computes inverse homography matrix. Args: k_s: intrinsics for source cameras, are [...] X 3 X 3 matrices k_t: intrinsics for target cameras, are [...] X 3 X 3 matrices rot: relative rotation, are [...] X 3 X 3 matrices t: [...] X 3 X 1, translations from source to target camera n_hat: [...] X 1 X 3, plane normal w.r.t source camera frame a: [...] X 1 X 1, plane equation displacement Returns: homography: [...] X 3 X 3 inverse homography matrices """ with tf.name_scope('inv_homography'): rot_t = nn_helpers.transpose(rot) k_t_inv = tf.matrix_inverse(k_t, name='k_t_inv') denom = a - tf.matmul(tf.matmul(n_hat, rot_t), t) numerator = tf.matmul(tf.matmul(tf.matmul(rot_t, t), n_hat), rot_t) inv_hom = tf.matmul( tf.matmul(k_s, rot_t + nn_helpers.divide_safe(numerator, denom)), k_t_inv, name='inv_hom') return inv_hom
Example #21
Source File: homography.py From layered-scene-inference with Apache License 2.0 | 6 votes |
def inv_homography_dmat(k_t, rot, t, n_hat, a): """Computes M where M*(u,v,1) = d_t. Args: k_t: intrinsics for target cameras, are [...] X 3 X 3 matrices rot: relative rotation, are [...] X 3 X 3 matrices t: [...] X 3 X 1, translations from source to target camera n_hat: [...] X 1 X 3, plane normal w.r.t source camera frame a: [...] X 1 X 1, plane equation displacement Returns: d_mat: [...] X 1 X 3 matrices """ with tf.name_scope('inv_homography'): rot_t = nn_helpers.transpose(rot) k_t_inv = tf.matrix_inverse(k_t, name='k_t_inv') denom = a - tf.matmul(tf.matmul(n_hat, rot_t), t) d_mat = nn_helpers.divide_safe( -1 * tf.matmul(tf.matmul(n_hat, rot_t), k_t_inv), denom, name='dmat') return d_mat
Example #22
Source File: problem_generator.py From g-tensorflow-models with Apache License 2.0 | 6 votes |
def objective(self, parameters, data=None, labels=None): theta_a = parameters[0] theta_b = parameters[1] # Compute theta_c from theta_a and theta_b. p = tf.matmul(self.a, theta_a) * tf.matmul(self.b, theta_b) p_trans = tf.transpose(p, name="p_trans") p_inv = tf.matmul( tf.matrix_inverse(tf.matmul(p_trans, p)), p_trans, name="p_inv") theta_c = tf.matmul(p_inv, self.c, name="theta_c") # Compute the "predicted" value of c. c_hat = tf.matmul(p, theta_c, name="c_hat") # Compute the loss (sum of squared errors). loss = tf.reduce_sum((c_hat - self.c)**2, name="loss") return loss
Example #23
Source File: linear_regression.py From g-tensorflow-models with Apache License 2.0 | 6 votes |
def solve_ridge(x, y, ridge_factor): with tf.name_scope("solve_ridge"): # Added a column of ones to the end of the feature matrix for bias A = tf.concat([x, tf.ones((x.shape.as_list()[0], 1))], axis=1) # Analytic solution for the ridge regression loss inv_target = tf.matmul(A, A, transpose_a=True) np_diag_penalty = ridge_factor * np.ones( A.shape.as_list()[1], dtype="float32") # Remove penalty on bias component of weights np_diag_penalty[-1] = 0. diag_penalty = tf.constant(np_diag_penalty) inv_target += tf.diag(diag_penalty) inv = tf.matrix_inverse(inv_target) w = tf.matmul(inv, tf.matmul(A, y, transpose_a=True)) return w
Example #24
Source File: problem_generator.py From models with Apache License 2.0 | 6 votes |
def objective(self, parameters, data=None, labels=None): theta_a = parameters[0] theta_b = parameters[1] # Compute theta_c from theta_a and theta_b. p = tf.matmul(self.a, theta_a) * tf.matmul(self.b, theta_b) p_trans = tf.transpose(p, name="p_trans") p_inv = tf.matmul( tf.matrix_inverse(tf.matmul(p_trans, p)), p_trans, name="p_inv") theta_c = tf.matmul(p_inv, self.c, name="theta_c") # Compute the "predicted" value of c. c_hat = tf.matmul(p, theta_c, name="c_hat") # Compute the loss (sum of squared errors). loss = tf.reduce_sum((c_hat - self.c)**2, name="loss") return loss
Example #25
Source File: linear_regression.py From models with Apache License 2.0 | 6 votes |
def solve_ridge(x, y, ridge_factor): with tf.name_scope("solve_ridge"): # Added a column of ones to the end of the feature matrix for bias A = tf.concat([x, tf.ones((x.shape.as_list()[0], 1))], axis=1) # Analytic solution for the ridge regression loss inv_target = tf.matmul(A, A, transpose_a=True) np_diag_penalty = ridge_factor * np.ones( A.shape.as_list()[1], dtype="float32") # Remove penalty on bias component of weights np_diag_penalty[-1] = 0. diag_penalty = tf.constant(np_diag_penalty) inv_target += tf.diag(diag_penalty) inv = tf.matrix_inverse(inv_target) w = tf.matmul(inv, tf.matmul(A, y, transpose_a=True)) return w
Example #26
Source File: problem_generator.py From multilabel-image-classification-tensorflow with MIT License | 6 votes |
def objective(self, parameters, data=None, labels=None): theta_a = parameters[0] theta_b = parameters[1] # Compute theta_c from theta_a and theta_b. p = tf.matmul(self.a, theta_a) * tf.matmul(self.b, theta_b) p_trans = tf.transpose(p, name="p_trans") p_inv = tf.matmul( tf.matrix_inverse(tf.matmul(p_trans, p)), p_trans, name="p_inv") theta_c = tf.matmul(p_inv, self.c, name="theta_c") # Compute the "predicted" value of c. c_hat = tf.matmul(p, theta_c, name="c_hat") # Compute the loss (sum of squared errors). loss = tf.reduce_sum((c_hat - self.c)**2, name="loss") return loss
Example #27
Source File: filter.py From kvae with MIT License | 6 votes |
def backward_step_fn(self, params, inputs): """ Backwards step over a batch, to be used in tf.scan :param params: :param inputs: (batch_size, variable dimensions) :return: """ mu_back, Sigma_back = params mu_pred_tp1, Sigma_pred_tp1, mu_filt_t, Sigma_filt_t, A = inputs # J_t = tf.matmul(tf.reshape(tf.transpose(tf.matrix_inverse(Sigma_pred_tp1), [0, 2, 1]), [-1, self.dim_z]), # self.A) # J_t = tf.transpose(tf.reshape(J_t, [-1, self.dim_z, self.dim_z]), [0, 2, 1]) J_t = tf.matmul(tf.transpose(A, [0, 2, 1]), tf.matrix_inverse(Sigma_pred_tp1)) J_t = tf.matmul(Sigma_filt_t, J_t) mu_back = mu_filt_t + tf.matmul(J_t, mu_back - mu_pred_tp1) Sigma_back = Sigma_filt_t + tf.matmul(J_t, tf.matmul(Sigma_back - Sigma_pred_tp1, J_t, adjoint_b=True)) return mu_back, Sigma_back
Example #28
Source File: homography_warping.py From MVSNet with MIT License | 5 votes |
def get_homographies(left_cam, right_cam, depth_num, depth_start, depth_interval): with tf.name_scope('get_homographies'): # cameras (K, R, t) R_left = tf.slice(left_cam, [0, 0, 0, 0], [-1, 1, 3, 3]) R_right = tf.slice(right_cam, [0, 0, 0, 0], [-1, 1, 3, 3]) t_left = tf.slice(left_cam, [0, 0, 0, 3], [-1, 1, 3, 1]) t_right = tf.slice(right_cam, [0, 0, 0, 3], [-1, 1, 3, 1]) K_left = tf.slice(left_cam, [0, 1, 0, 0], [-1, 1, 3, 3]) K_right = tf.slice(right_cam, [0, 1, 0, 0], [-1, 1, 3, 3]) # depth depth_num = tf.reshape(tf.cast(depth_num, 'int32'), []) depth = depth_start + tf.cast(tf.range(depth_num), tf.float32) * depth_interval # preparation num_depth = tf.shape(depth)[0] K_left_inv = tf.matrix_inverse(tf.squeeze(K_left, axis=1)) R_left_trans = tf.transpose(tf.squeeze(R_left, axis=1), perm=[0, 2, 1]) R_right_trans = tf.transpose(tf.squeeze(R_right, axis=1), perm=[0, 2, 1]) fronto_direction = tf.slice(tf.squeeze(R_left, axis=1), [0, 2, 0], [-1, 1, 3]) # (B, D, 1, 3) c_left = -tf.matmul(R_left_trans, tf.squeeze(t_left, axis=1)) c_right = -tf.matmul(R_right_trans, tf.squeeze(t_right, axis=1)) # (B, D, 3, 1) c_relative = tf.subtract(c_right, c_left) # compute batch_size = tf.shape(R_left)[0] temp_vec = tf.matmul(c_relative, fronto_direction) depth_mat = tf.tile(tf.reshape(depth, [batch_size, num_depth, 1, 1]), [1, 1, 3, 3]) temp_vec = tf.tile(tf.expand_dims(temp_vec, axis=1), [1, num_depth, 1, 1]) middle_mat0 = tf.eye(3, batch_shape=[batch_size, num_depth]) - temp_vec / depth_mat middle_mat1 = tf.tile(tf.expand_dims(tf.matmul(R_left_trans, K_left_inv), axis=1), [1, num_depth, 1, 1]) middle_mat2 = tf.matmul(middle_mat0, middle_mat1) homographies = tf.matmul(tf.tile(K_right, [1, num_depth, 1, 1]) , tf.matmul(tf.tile(R_right, [1, num_depth, 1, 1]) , middle_mat2)) return homographies
Example #29
Source File: dagmm.py From AnomalyDetectionTransformations with MIT License | 5 votes |
def _calc_component_density(z, phi, mu, sigma): sig_inv = tf.matrix_inverse(sigma) sig_sqrt_det = K.sqrt(tf.matrix_determinant(2 * np.pi * sigma) + K.epsilon()) density = phi * (K.exp(-0.5 * K.sum(K.dot(z - mu, sig_inv) * (z - mu), axis=-1, keepdims=True)) / sig_sqrt_det) + K.epsilon() return density
Example #30
Source File: utils.py From kfac with Apache License 2.0 | 5 votes |
def posdef_inv_matrix_inverse(tensor, identity, damping): """Computes inverse(tensor + damping * identity) directly.""" return tf.matrix_inverse(tensor + damping * identity)