Python tensorflow.placeholder_with_default() Examples
The following are 30
code examples of tensorflow.placeholder_with_default().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: test_case.py From ros_people_object_detection_tensorflow with Apache License 2.0 | 6 votes |
def execute_cpu(self, graph_fn, inputs): """Constructs the graph, executes it on CPU and returns the result. Args: graph_fn: a callable that constructs the tensorflow graph to test. The arguments of this function should correspond to `inputs`. inputs: a list of numpy arrays to feed input to the computation graph. Returns: A list of numpy arrays or a scalar returned from executing the tensorflow graph. """ with self.test_session(graph=tf.Graph()) as sess: placeholders = [tf.placeholder_with_default(v, v.shape) for v in inputs] results = graph_fn(*placeholders) sess.run([tf.global_variables_initializer(), tf.tables_initializer(), tf.local_variables_initializer()]) materialized_results = sess.run(results, feed_dict=dict(zip(placeholders, inputs))) if (len(materialized_results) == 1 and (isinstance(materialized_results, list) or isinstance(materialized_results, tuple))): materialized_results = materialized_results[0] return materialized_results
Example #2
Source File: lstm_test.py From BERT with Apache License 2.0 | 6 votes |
def testLSTMSeq2SeqAttention(self): vocab_size = 9 x = np.random.randint(1, high=vocab_size, size=(3, 5, 1, 1)) y = np.random.randint(1, high=vocab_size, size=(3, 6, 1, 1)) hparams = lstm.lstm_attention() p_hparams = problem_hparams.test_problem_hparams(vocab_size, vocab_size, hparams) x = tf.constant(x, dtype=tf.int32) x = tf.placeholder_with_default(x, shape=[None, None, 1, 1]) with self.test_session() as session: features = { "inputs": x, "targets": tf.constant(y, dtype=tf.int32), } model = lstm.LSTMSeq2seqAttention( hparams, tf.estimator.ModeKeys.TRAIN, p_hparams) logits, _ = model(features) session.run(tf.global_variables_initializer()) res = session.run(logits) self.assertEqual(res.shape, (3, 6, 1, 1, vocab_size))
Example #3
Source File: Trainer.py From MOTSFusion with MIT License | 6 votes |
def __init__(self, config, train_network, test_network, global_step, session): self.opt_str = config.string("optimizer", "adam").lower() self.train_network = train_network self.test_network = test_network self.session = session self.global_step = global_step self.validation_step_number = 0 self.gradient_clipping = config.float("gradient_clipping", -1.0) self.learning_rates = config.int_key_dict("learning_rates") self.curr_learning_rate = self.learning_rates[1] self.lr_var = tf.placeholder(tf.float32, shape=[], name="learning_rate") self.loss_scale_var = tf.placeholder_with_default(1.0, shape=[], name="loss_scale") self.opt, self.reset_opt_op = self.create_optimizer(config) grad_norm = None if train_network is not None: self._step_op, grad_norm = self.create_step_op_and_grad_norm() self._update_ops = self.train_network.update_ops else: self._step_op = None self._update_ops = None self.summary_writer, self.summary_op_train, self.summary_op_test = self.init_summaries(config, grad_norm)
Example #4
Source File: simulate_test.py From soccer-matlab with BSD 2-Clause "Simplified" License | 6 votes |
def test_reset_forced(self): reset = tf.placeholder_with_default(False, ()) batch_env = self._create_test_batch_env((2, 4)) algo = tools.MockAlgorithm(batch_env) done, _, _ = tools.simulate(batch_env, algo, False, reset) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) sess.run(done) sess.run(done, {reset: True}) sess.run(done) sess.run(done, {reset: True}) sess.run(done) sess.run(done) sess.run(done) self.assertAllEqual([1, 2, 2, 2], batch_env[0].steps) self.assertAllEqual([1, 2, 4], batch_env[1].steps)
Example #5
Source File: test_case.py From Person-Detection-and-Tracking with MIT License | 6 votes |
def execute_cpu(self, graph_fn, inputs): """Constructs the graph, executes it on CPU and returns the result. Args: graph_fn: a callable that constructs the tensorflow graph to test. The arguments of this function should correspond to `inputs`. inputs: a list of numpy arrays to feed input to the computation graph. Returns: A list of numpy arrays or a scalar returned from executing the tensorflow graph. """ with self.test_session(graph=tf.Graph()) as sess: placeholders = [tf.placeholder_with_default(v, v.shape) for v in inputs] results = graph_fn(*placeholders) sess.run([tf.global_variables_initializer(), tf.tables_initializer(), tf.local_variables_initializer()]) materialized_results = sess.run(results, feed_dict=dict(zip(placeholders, inputs))) if (len(materialized_results) == 1 and (isinstance(materialized_results, list) or isinstance(materialized_results, tuple))): materialized_results = materialized_results[0] return materialized_results
Example #6
Source File: resnet18.py From meta-transfer-learning with MIT License | 6 votes |
def __init__(self): # Set the dimension number for the input feature maps self.dim_input = FLAGS.img_size * FLAGS.img_size * 3 # Set the dimension number for the outputs self.dim_output = FLAGS.way_num # Load base learning rates from FLAGS self.update_lr = FLAGS.base_lr # Load the pre-train phase class number from FLAGS self.pretrain_class_num = FLAGS.pretrain_class_num # Set the initial meta learning rate self.meta_lr = tf.placeholder_with_default(FLAGS.meta_lr, ()) # Set the initial pre-train learning rate self.pretrain_lr = tf.placeholder_with_default(FLAGS.pre_lr, ()) # Set the default objective functions for meta-train and pre-train self.loss_func = xent self.pretrain_loss_func = softmaxloss # Set the default channel number to 3 self.channels = 3 # Load the image size from FLAGS self.img_size = FLAGS.img_size
Example #7
Source File: resnet12.py From meta-transfer-learning with MIT License | 6 votes |
def __init__(self): # Set the dimension number for the input feature maps self.dim_input = FLAGS.img_size * FLAGS.img_size * 3 # Set the dimension number for the outputs self.dim_output = FLAGS.way_num # Load base learning rates from FLAGS self.update_lr = FLAGS.base_lr # Load the pre-train phase class number from FLAGS self.pretrain_class_num = FLAGS.pretrain_class_num # Set the initial meta learning rate self.meta_lr = tf.placeholder_with_default(FLAGS.meta_lr, ()) # Set the initial pre-train learning rate self.pretrain_lr = tf.placeholder_with_default(FLAGS.pre_lr, ()) # Set the default objective functions for meta-train and pre-train self.loss_func = xent self.pretrain_loss_func = softmaxloss # Set the default channel number to 3 self.channels = 3 # Load the image size from FLAGS self.img_size = FLAGS.img_size
Example #8
Source File: lstm_test.py From fine-lm with MIT License | 6 votes |
def testLSTMSeq2SeqAttention(self): vocab_size = 9 x = np.random.random_integers(1, high=vocab_size - 1, size=(3, 5, 1, 1)) y = np.random.random_integers(1, high=vocab_size - 1, size=(3, 6, 1, 1)) hparams = lstm.lstm_attention() p_hparams = problem_hparams.test_problem_hparams(vocab_size, vocab_size) x = tf.constant(x, dtype=tf.int32) x = tf.placeholder_with_default(x, shape=[None, None, 1, 1]) with self.test_session() as session: features = { "inputs": x, "targets": tf.constant(y, dtype=tf.int32), } model = lstm.LSTMSeq2seqAttention( hparams, tf.estimator.ModeKeys.TRAIN, p_hparams) logits, _ = model(features) session.run(tf.global_variables_initializer()) res = session.run(logits) self.assertEqual(res.shape, (3, 6, 1, 1, vocab_size))
Example #9
Source File: lstm_test.py From fine-lm with MIT License | 6 votes |
def testLSTMSeq2seqAttentionBidirectionalEncoder(self): vocab_size = 9 x = np.random.random_integers(1, high=vocab_size - 1, size=(3, 5, 1, 1)) y = np.random.random_integers(1, high=vocab_size - 1, size=(3, 6, 1, 1)) hparams = lstm.lstm_attention() p_hparams = problem_hparams.test_problem_hparams(vocab_size, vocab_size) x = tf.constant(x, dtype=tf.int32) x = tf.placeholder_with_default(x, shape=[None, None, 1, 1]) with self.test_session() as session: features = { "inputs": x, "targets": tf.constant(y, dtype=tf.int32), } model = lstm.LSTMSeq2seqAttentionBidirectionalEncoder( hparams, tf.estimator.ModeKeys.TRAIN, p_hparams) logits, _ = model(features) session.run(tf.global_variables_initializer()) res = session.run(logits) self.assertEqual(res.shape, (3, 6, 1, 1, vocab_size))
Example #10
Source File: ml_100k.py From recommender-tensorflow with MIT License | 6 votes |
def serving_input_fn(): feature_placeholders = { "user_id": tf.placeholder(tf.int32, [None]), "item_id": tf.placeholder(tf.int32, [None]), "age": tf.placeholder(tf.int32, [None]), "gender": tf.placeholder(tf.string, [None]), "occupation": tf.placeholder(tf.string, [None]), "zipcode": tf.placeholder(tf.string, [None]), "release_year": tf.placeholder(tf.int32, [None]), } feature_placeholders.update({ col: tf.placeholder_with_default(tf.constant([0]), [None]) for col in GENRE }) features = { key: tf.expand_dims(tensor, -1) for key, tensor in feature_placeholders.items() } return tf.estimator.export.ServingInputReceiver( features=features, receiver_tensors=feature_placeholders )
Example #11
Source File: qa_model.py From cs224n-win18-squad with Apache License 2.0 | 6 votes |
def add_placeholders(self): """ Add placeholders to the graph. Placeholders are used to feed in inputs. """ # Add placeholders for inputs. # These are all batch-first: the None corresponds to batch_size and # allows you to run the same model with variable batch_size self.context_ids = tf.placeholder(tf.int32, shape=[None, self.FLAGS.context_len]) self.context_mask = tf.placeholder(tf.int32, shape=[None, self.FLAGS.context_len]) self.qn_ids = tf.placeholder(tf.int32, shape=[None, self.FLAGS.question_len]) self.qn_mask = tf.placeholder(tf.int32, shape=[None, self.FLAGS.question_len]) self.ans_span = tf.placeholder(tf.int32, shape=[None, 2]) # Add a placeholder to feed in the keep probability (for dropout). # This is necessary so that we can instruct the model to use dropout when training, but not when testing self.keep_prob = tf.placeholder_with_default(1.0, shape=())
Example #12
Source File: layers.py From PADME with MIT License | 6 votes |
def create_tensor(self, in_layers=None, set_tensors=True, **kwargs): if in_layers is None: in_layers = self.in_layers in_layers = convert_to_layers(in_layers) try: shape = self._shape except NotImplementedError: shape = None if len(in_layers) > 0: queue = in_layers[0] placeholder = queue.out_tensors[self.get_pre_q_name()] self.out_tensor = tf.placeholder_with_default(placeholder, self._shape) return self.out_tensor out_tensor = tf.placeholder(dtype=self.dtype, shape=self._shape) if set_tensors: self.out_tensor = out_tensor return out_tensor
Example #13
Source File: model.py From AdaIN-TF with MIT License | 5 votes |
def build_model(self, vgg_weights): self.content_imgs = tf.placeholder(shape=(None, None, None, 3), name='content_imgs', dtype=tf.float32) self.style_imgs = tf.placeholder(shape=(None, None, None, 3), name='style_imgs', dtype=tf.float32) self.alpha = tf.placeholder_with_default(1., shape=[], name='alpha') ### Load shared VGG model up to relu4_1 with tf.name_scope('encoder'): self.vgg_model = vgg_from_t7(vgg_weights, target_layer='relu4_1') print(self.vgg_model.summary()) ### Build encoders for content layer with tf.name_scope('content_layer_encoder'): # Build content layer encoding model content_layer = self.vgg_model.get_layer('relu4_1').output self.content_encoder_model = Model(inputs=self.vgg_model.input, outputs=content_layer) # Setup content layer encodings for content/style images self.content_encoded = self.content_encoder_model(self.content_imgs) self.style_encoded = self.content_encoder_model(self.style_imgs) # Apply affine Adaptive Instance Norm transform self.adain_encoded = adain(self.content_encoded, self.style_encoded, self.alpha) ### Build decoder with tf.name_scope('decoder'): n_channels = self.adain_encoded.get_shape()[-1].value self.decoder_model = self.build_decoder(input_shape=(None, None, n_channels)) # Setup a placeholder that defaults to the adain tensor but can be substituted with a feed_dict. Needed for interpolation. self.adain_encoded_pl = tf.placeholder_with_default(self.adain_encoded, shape=self.adain_encoded.get_shape()) # Stylized/decoded output from AdaIN transformed encoding self.decoded = self.decoder_model(Lambda(lambda x: x)(self.adain_encoded_pl)) # Lambda converts TF tensor to Keras # Content layer encoding for stylized out self.decoded_encoded = self.content_encoder_model(self.decoded)
Example #14
Source File: test_case.py From Person-Detection-and-Tracking with MIT License | 5 votes |
def execute_tpu(self, graph_fn, inputs): """Constructs the graph, executes it on TPU and returns the result. Args: graph_fn: a callable that constructs the tensorflow graph to test. The arguments of this function should correspond to `inputs`. inputs: a list of numpy arrays to feed input to the computation graph. Returns: A list of numpy arrays or a scalar returned from executing the tensorflow graph. """ with self.test_session(graph=tf.Graph()) as sess: placeholders = [tf.placeholder_with_default(v, v.shape) for v in inputs] tpu_computation = tpu.rewrite(graph_fn, placeholders) sess.run(tpu.initialize_system()) sess.run([tf.global_variables_initializer(), tf.tables_initializer(), tf.local_variables_initializer()]) materialized_results = sess.run(tpu_computation, feed_dict=dict(zip(placeholders, inputs))) sess.run(tpu.shutdown_system()) if (len(materialized_results) == 1 and (isinstance(materialized_results, list) or isinstance(materialized_results, tuple))): materialized_results = materialized_results[0] return materialized_results
Example #15
Source File: model.py From Activation-Visualization-Histogram with MIT License | 5 votes |
def __init__(self, config, debug_information=False, is_train=True): self.debug = debug_information self.config = config self.batch_size = self.config.batch_size self.input_height = self.config.data_info[0] self.input_width = self.config.data_info[1] self.num_class = self.config.data_info[2] self.c_dim = self.config.data_info[3] self.visualize_shape = self.config.visualize_shape self.conv_info = self.config.conv_info self.activation_fn = { 'selu': selu, 'relu': tf.nn.relu, 'lrelu': lrelu, }[self.config.activation] # create placeholders for the input self.image = tf.placeholder( name='image', dtype=tf.float32, shape=[self.batch_size, self.input_height, self.input_width, self.c_dim], ) self.label = tf.placeholder( name='label', dtype=tf.float32, shape=[self.batch_size, self.num_class], ) self.is_training = tf.placeholder_with_default(bool(is_train), [], name='is_training') self.build(is_train=is_train)
Example #16
Source File: train_eval.py From yolo_v2 with Apache License 2.0 | 5 votes |
def get_message_and_key(self): """Generate random pseudo-boolean key and message values.""" batch_size = tf.placeholder_with_default(FLAGS.batch_size, shape=[]) in_m = batch_of_random_bools(batch_size, TEXT_SIZE) in_k = batch_of_random_bools(batch_size, KEY_SIZE) return in_m, in_k
Example #17
Source File: tf_model.py From char-rnn-text-generation with MIT License | 5 votes |
def build_train_graph(loss, learning_rate=0.001, clip_norm=5.0): """ builds training graph """ train_args = {"learning_rate": learning_rate, "clip_norm": clip_norm} logger.debug("building training graph: %s.", train_args) learning_rate = tf.placeholder_with_default(learning_rate, [], "learning_rate") global_step = tf.Variable(0, name='global_step', trainable=False) train_op = layers.optimize_loss(loss, global_step, learning_rate, "Adam", clip_gradients=clip_norm) model = {"global_step": global_step, "train_op": train_op, "learning_rate": learning_rate, "train_args": train_args} return model
Example #18
Source File: speech_model.py From speechT with Apache License 2.0 | 5 votes |
def add_decoding_ops(self, language_model: str = None, lm_weight: float = 0.8, word_count_weight: float = 0.0, valid_word_count_weight: float = 2.3): """ Add the ops for decoding j Args: language_model: the file path to the language model to use for beam search decoding or None word_count_weight: The weight added for each added word valid_word_count_weight: The weight added for each in vocabulary word lm_weight: The weight multiplied with the language model scoring """ with tf.name_scope('decoding'): self.lm_weight = tf.placeholder_with_default(lm_weight, shape=(), name='language_model_weight') self.word_count_weight = tf.placeholder_with_default(word_count_weight, shape=(), name='word_count_weight') self.valid_word_count_weight = tf.placeholder_with_default(valid_word_count_weight, shape=(), name='valid_word_count_weight') if language_model: self.softmaxed = tf.log(tf.nn.softmax(self.logits, name='softmax') + 1e-8) / math.log(10) self.decoded, self.log_probabilities = tf.nn.ctc_beam_search_decoder(self.softmaxed, self.sequence_lengths // 2, kenlm_directory_path=language_model, kenlm_weight=self.lm_weight, word_count_weight=self.word_count_weight, valid_word_count_weight=self.valid_word_count_weight, beam_width=100, merge_repeated=False, top_paths=1) else: self.decoded, self.log_probabilities = tf.nn.ctc_greedy_decoder(self.logits, self.sequence_lengths // 2, merge_repeated=True)
Example #19
Source File: network.py From LIP_JPPNet with MIT License | 5 votes |
def __init__(self, inputs, trainable=True, is_training=False, n_classes=20): # The input nodes for this network self.inputs = inputs # The current list of terminal nodes self.terminals = [] # Mapping from layer names to layers self.layers = dict(inputs) # If true, the resulting variables are set as trainable self.trainable = trainable # Switch variable for dropout self.use_dropout = tf.placeholder_with_default(tf.constant(1.0), shape=[], name='use_dropout') self.setup(is_training, n_classes)
Example #20
Source File: beam_search_test.py From BERT with Apache License 2.0 | 5 votes |
def testStatesAfterLoop(self): batch_size = 1 beam_size = 1 vocab_size = 2 decode_length = 3 initial_ids = tf.constant([0] * batch_size) # GO probabilities = tf.constant([[[0.7, 0.3]], [[0.4, 0.6]], [[0.5, 0.5]]]) def symbols_to_logits(ids, _, states): pos = tf.shape(ids)[1] - 1 logits = tf.to_float(tf.log(probabilities[pos, :])) states["state"] += 1 return logits, states states = { "state": tf.zeros((batch_size, 1)), } states["state"] = tf.placeholder_with_default( states["state"], shape=(None, 1)) _, _, final_states = beam_search.beam_search( symbols_to_logits, initial_ids, beam_size, decode_length, vocab_size, 0.0, eos_id=1, states=states) with self.test_session() as sess: final_states = sess.run(final_states) self.assertAllEqual([[[2]]], final_states["state"])
Example #21
Source File: model_base.py From EasyRL with Apache License 2.0 | 5 votes |
def add_extra_summary_op(self): """add extra summary op. summary_ops add in this function will be exported when the `session.run` called in training stage. Note: be careful to add summary_op, any input of summary_op missing will raise an error. """ self.extra_episode_return = tf.placeholder_with_default( tf.constant([0.0], dtype=tf.float32), shape=[None], name="episode_return") self.summary_ops["extra"].extend([ tf.summary.scalar( name="episode_return", tensor=tf.reduce_mean(self.extra_episode_return)) ])
Example #22
Source File: network.py From Siamese-RPN-tensorflow with MIT License | 5 votes |
def __init__(self, inputs, trainable=True): self.k=5 # The input nodes for this network self.inputs = inputs # The current list of terminal nodes self.terminals = [] # Mapping from layer names to layers self.layers = dict(inputs) # If true, the resulting variables are set as trainable self.trainable = trainable # Switch variable for dropout self.use_dropout = tf.placeholder_with_default(tf.constant(1.0), shape=[], name='use_dropout') self.setup()
Example #23
Source File: maml.py From maml with MIT License | 5 votes |
def __init__(self, dim_input=1, dim_output=1, test_num_updates=5): """ must call construct_model() after initializing MAML! """ self.dim_input = dim_input self.dim_output = dim_output self.update_lr = FLAGS.update_lr self.meta_lr = tf.placeholder_with_default(FLAGS.meta_lr, ()) self.classification = False self.test_num_updates = test_num_updates if FLAGS.datasource == 'sinusoid': self.dim_hidden = [40, 40] self.loss_func = mse self.forward = self.forward_fc self.construct_weights = self.construct_fc_weights elif FLAGS.datasource == 'omniglot' or FLAGS.datasource == 'miniimagenet': self.loss_func = xent self.classification = True if FLAGS.conv: self.dim_hidden = FLAGS.num_filters self.forward = self.forward_conv self.construct_weights = self.construct_conv_weights else: self.dim_hidden = [256, 128, 64, 64] self.forward=self.forward_fc self.construct_weights = self.construct_fc_weights if FLAGS.datasource == 'miniimagenet': self.channels = 3 else: self.channels = 1 self.img_size = int(np.sqrt(self.dim_input/self.channels)) else: raise ValueError('Unrecognized data source.')
Example #24
Source File: test_case.py From ros_people_object_detection_tensorflow with Apache License 2.0 | 5 votes |
def execute_tpu(self, graph_fn, inputs): """Constructs the graph, executes it on TPU and returns the result. Args: graph_fn: a callable that constructs the tensorflow graph to test. The arguments of this function should correspond to `inputs`. inputs: a list of numpy arrays to feed input to the computation graph. Returns: A list of numpy arrays or a scalar returned from executing the tensorflow graph. """ with self.test_session(graph=tf.Graph()) as sess: placeholders = [tf.placeholder_with_default(v, v.shape) for v in inputs] tpu_computation = tpu.rewrite(graph_fn, placeholders) sess.run(tpu.initialize_system()) sess.run([tf.global_variables_initializer(), tf.tables_initializer(), tf.local_variables_initializer()]) materialized_results = sess.run(tpu_computation, feed_dict=dict(zip(placeholders, inputs))) sess.run(tpu.shutdown_system()) if (len(materialized_results) == 1 and (isinstance(materialized_results, list) or isinstance(materialized_results, tuple))): materialized_results = materialized_results[0] return materialized_results
Example #25
Source File: baseop.py From Traffic_sign_detection_YOLO with MIT License | 5 votes |
def wrap_pholder(self, ph, feed): """wrap layer.h into placeholders""" phtype = type(self.lay.h[ph]) if phtype is not dict: return sig = '{}/{}'.format(self.scope, ph) val = self.lay.h[ph] self.lay.h[ph] = tf.placeholder_with_default( val['dfault'], val['shape'], name = sig) feed[self.lay.h[ph]] = val['feed']
Example #26
Source File: models.py From CausalGAN with MIT License | 5 votes |
def __init__(self, N, hidden_size=10,z_dim=10): with tf.variable_scope('Gen') as scope: self.N=tf.placeholder_with_default(N,shape=[]) self.hidden_size=hidden_size self.z_dim=z_dim self.build() self.tr_var = tf.contrib.framework.get_variables(scope) self.step=tf.Variable(0,name='step',trainable=False) self.var = tf.contrib.framework.get_variables(scope)
Example #27
Source File: models.py From CausalGAN with MIT License | 5 votes |
def __init__(self,N): with tf.variable_scope('Arrow') as scope: self.N=tf.placeholder_with_default(N,shape=[]) #self.N=tf.constant(N) #how many to sample at a time self.e1=tf.random_uniform([self.N,1],0,1) self.e2=tf.random_uniform([self.N,1],0,1) self.e3=tf.random_uniform([self.N,1],0,1) self.build() #WARN. some of these are not trainable: i.e. poly self.var = tf.contrib.framework.get_variables(scope)
Example #28
Source File: network_base.py From tf-pose with Apache License 2.0 | 5 votes |
def __init__(self, inputs, trainable=True): # The input nodes for this network self.inputs = inputs # The current list of terminal nodes self.terminals = [] # Mapping from layer names to layers self.layers = dict(inputs) # If true, the resulting variables are set as trainable self.trainable = trainable # Switch variable for dropout self.use_dropout = tf.placeholder_with_default(tf.constant(1.0), shape=[], name='use_dropout') self.setup()
Example #29
Source File: test_layers.py From aboleth with Apache License 2.0 | 5 votes |
def test_input_sample(make_data): """Test the input and tiling layer.""" x, _, X = make_data n_samples = tf.placeholder_with_default(3, []) s = ab.InputLayer(name='myname', n_samples=n_samples) F, KL = s(myname=x) tc = tf.test.TestCase() with tc.test_session(): f = F.eval() X_array = X.eval() assert KL == 0.0 assert np.array_equal(f, X_array) for i in range(3): assert np.array_equal(f[i], x)
Example #30
Source File: sample.py From CausalGAN with MIT License | 5 votes |
def interpret_dict( a_dict, model,n_times=1, on_logits=True): ''' pass either a do_dict or a cond_dict. The rules for converting arguments to numpy arrays to pass to tensorflow are identical ''' if a_dict is None: return {} elif len(a_dict)==0: return {} if n_times>1: token=tf.placeholder_with_default(2.22) a_dict[token]=-2.22 p_a_dict=take_product(a_dict) ##Need divisible batch_size for most models if len(p_a_dict)>0: L=len(p_a_dict.values()[0]) else: L=0 print("L is " + str(L)) print(p_a_dict) ##Check compatability batch_size and L if L>=model.batch_size: if not L % model.batch_size == 0: raise ValueError('a_dict must be dividable by batch_size\ but instead product of inputs was of length',L) elif model.batch_size % L == 0: p_a_dict = {key:np.repeat(value,model.batch_size/L,axis=0) for key,value in p_a_dict.items()} else: raise ValueError('No. of intervened values must divide batch_size.') return p_a_dict