Python tensorflow.InteractiveSession() Examples
The following are 30
code examples of tensorflow.InteractiveSession().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: utils.py From tcav with Apache License 2.0 | 6 votes |
def create_session(timeout=10000, interactive=True): """Create a tf session for the model. # This function is slight motification of code written by Alex Mordvintsev Args: timeout: tfutil param. Returns: TF session. """ graph = tf.Graph() config = tf.ConfigProto() config.gpu_options.allow_growth = True config.operation_timeout_in_ms = int(timeout*1000) if interactive: return tf.InteractiveSession(graph=graph, config=config) else: return tf.Session(graph=graph, config=config)
Example #2
Source File: TestUpd.py From NTM-One-Shot-TF with MIT License | 6 votes |
def omniglot(): sess = tf.InteractiveSession() """ def wrapper(v): return tf.Print(v, [v], message="Printing v") v = tf.Variable(initial_value=np.arange(0, 36).reshape((6, 6)), dtype=tf.float32, name='Matrix') sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) temp = tf.Variable(initial_value=np.arange(0, 36).reshape((6, 6)), dtype=tf.float32, name='temp') temp = wrapper(v) #with tf.control_dependencies([temp]): temp.eval() print 'Hello'""" def update_tensor(V, dim2, val): # Update tensor V, with index(:,dim2[:]) by val[:] val = tf.cast(val, V.dtype) def body(_, (v, d2, chg)): d2_int = tf.cast(d2, tf.int32) return tf.slice(tf.concat_v2([v[:d2_int],[chg] ,v[d2_int+1:]], axis=0), [0], [v.get_shape().as_list()[0]]) Z = tf.scan(body, elems=(V, dim2, val), initializer=tf.constant(1, shape=V.get_shape().as_list()[1:], dtype=tf.float32), name="Scan_Update") return Z
Example #3
Source File: function.py From Gather-Deployment with MIT License | 6 votes |
def run(self): g_emotion = load_graph('emotion.pb') x_emotion = g_emotion.get_tensor_by_name('import/Placeholder:0') logits_emotion = g_emotion.get_tensor_by_name('import/logits:0') sess_emotion = tf.InteractiveSession(graph = g_emotion) with open('fast-text-emotion.json') as fopen: dict_emotion = json.load(fopen) with self.input()['Sentiment'].open('r') as fopen: outputs = json.load(fopen) for i in range(0, len(outputs), self.batch_size): batch_x_text = outputs[i : min(i + self.batch_size, len(outputs))] batch_x_text = [t['text'] for t in batch_x_text] batch_x_text = [clearstring(t) for t in batch_x_text] batch_x = str_idx(batch_x_text, dict_emotion['dictionary'], 100) output_emotion = sess_emotion.run( logits_emotion, feed_dict = {x_emotion: batch_x} ) labels = [emotion_label[l] for l in np.argmax(output_emotion, 1)] for no, label in enumerate(labels): outputs[i + no]['emotion_label'] = label with self.output().open('w') as fopen: fopen.write(json.dumps(outputs))
Example #4
Source File: readTFevents.py From TEGAN with Apache License 2.0 | 6 votes |
def get_tags_from_event(filename): sess = tf.InteractiveSession() i = 0; tags = []; with sess.as_default(): for event in tf.train.summary_iterator(filename): if (i==0): printed = 0; for val in event.summary.value: print(val.tag) tags.append[val.tag] printed = 1 if (printed): i = 1 else: break; return tags
Example #5
Source File: readTFevents.py From TEGAN with Apache License 2.0 | 6 votes |
def read_images_data_from_event(filename, tag): image_str = tf.placeholder(tf.string) image_tf = tf.image.decode_image(image_str) image_list = []; sess = tf.InteractiveSession() with sess.as_default(): count = 0 for event in tf.train.summary_iterator(filename): for val in event.summary.value: if val.tag == tag: im = image_tf.eval({image_str: val.image.encoded_image_string}) image_list.append(im) count += 1 return image_list
Example #6
Source File: readTFevents.py From TEGAN with Apache License 2.0 | 6 votes |
def save_images_from_event(filename, tag, output_dir='./'): assert(os.path.isdir(output_dir)) image_str = tf.placeholder(tf.string) image_tf = tf.image.decode_image(image_str) sess = tf.InteractiveSession() with sess.as_default(): count = 0 for event in tf.train.summary_iterator(filename): for val in event.summary.value: if val.tag == tag: im = image_tf.eval({image_str: val.image.encoded_image_string}) output_fn = os.path.realpath('{}/image_{}_{:05d}.png'.format(output_dir, tag, count)) print("Saving '{}'".format(output_fn)) scipy.misc.imsave(output_fn, im) count += 1 return
Example #7
Source File: freeze.py From adversarial_audio with MIT License | 6 votes |
def main(_): # Create the model and load its weights. sess = tf.InteractiveSession() create_inference_graph(FLAGS.wanted_words, FLAGS.sample_rate, FLAGS.clip_duration_ms, FLAGS.clip_stride_ms, FLAGS.window_size_ms, FLAGS.window_stride_ms, FLAGS.dct_coefficient_count, FLAGS.model_architecture) models.load_variables_from_checkpoint(sess, FLAGS.start_checkpoint) # Turn all the variables into inline constants inside the graph and save it. frozen_graph_def = graph_util.convert_variables_to_constants( sess, sess.graph_def, ['labels_softmax']) tf.train.write_graph( frozen_graph_def, os.path.dirname(FLAGS.output_file), os.path.basename(FLAGS.output_file), as_text=False) tf.logging.info('Saved frozen graph to %s', FLAGS.output_file)
Example #8
Source File: breakout_a3c.py From reinforcement-learning with MIT License | 6 votes |
def __init__(self, action_size): # environment settings self.state_size = (84, 84, 4) self.action_size = action_size self.discount_factor = 0.99 self.no_op_steps = 30 # optimizer parameters self.actor_lr = 2.5e-4 self.critic_lr = 2.5e-4 self.threads = 8 # create model for actor and critic network self.actor, self.critic = self.build_model() # method for training actor and critic network self.optimizer = [self.actor_optimizer(), self.critic_optimizer()] self.sess = tf.InteractiveSession() K.set_session(self.sess) self.sess.run(tf.global_variables_initializer()) self.summary_placeholders, self.update_ops, self.summary_op = self.setup_summary() self.summary_writer = tf.summary.FileWriter('summary/breakout_a3c', self.sess.graph)
Example #9
Source File: tf_util.py From stable-baselines with MIT License | 6 votes |
def make_session(num_cpu=None, make_default=False, graph=None): """ Returns a session that will use <num_cpu> CPU's only :param num_cpu: (int) number of CPUs to use for TensorFlow :param make_default: (bool) if this should return an InteractiveSession or a normal Session :param graph: (TensorFlow Graph) the graph of the session :return: (TensorFlow session) """ if num_cpu is None: num_cpu = int(os.getenv('RCALL_NUM_CPU', multiprocessing.cpu_count())) tf_config = tf.ConfigProto( allow_soft_placement=True, inter_op_parallelism_threads=num_cpu, intra_op_parallelism_threads=num_cpu) # Prevent tensorflow from taking all the gpu memory tf_config.gpu_options.allow_growth = True if make_default: return tf.InteractiveSession(config=tf_config, graph=graph) else: return tf.Session(config=tf_config, graph=graph)
Example #10
Source File: mnist_classifiers.py From TensorFlask with Apache License 2.0 | 6 votes |
def __init__(self, model_param_path='model/model_params.npz', max_batch_size=64): """Initalized tensorflow session, set up tensorflow graph, and loads pretrained model weights Arguments: model_params (string) : Path to pretrained model parameters max_batch_size (int) : Maximum number of images handled in a single call to classify. """ self.max_batch_size = max_batch_size self.model_param_path = model_param_path #Setup tensorflow graph and initizalize variables self.session = tf.InteractiveSession() self.x = tf.placeholder(tf.float32, shape=[None, 28, 28, 1], name='x') self.network, self.predictions, self.probabilities = self._load_model_definition() self.session.run( tf.global_variables_initializer() ) #Load saved parametes self._load_model_parameters()
Example #11
Source File: TestUpd.py From How-to-Learn-from-Little-Data with MIT License | 6 votes |
def omniglot(): sess = tf.InteractiveSession() """ def wrapper(v): return tf.Print(v, [v], message="Printing v") v = tf.Variable(initial_value=np.arange(0, 36).reshape((6, 6)), dtype=tf.float32, name='Matrix') sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) temp = tf.Variable(initial_value=np.arange(0, 36).reshape((6, 6)), dtype=tf.float32, name='temp') temp = wrapper(v) #with tf.control_dependencies([temp]): temp.eval() print 'Hello'""" def update_tensor(V, dim2, val): # Update tensor V, with index(:,dim2[:]) by val[:] val = tf.cast(val, V.dtype) def body(_, (v, d2, chg)): d2_int = tf.cast(d2, tf.int32) return tf.slice(tf.concat_v2([v[:d2_int],[chg] ,v[d2_int+1:]], axis=0), [0], [v.get_shape().as_list()[0]]) Z = tf.scan(body, elems=(V, dim2, val), initializer=tf.constant(1, shape=V.get_shape().as_list()[1:], dtype=tf.float32), name="Scan_Update") return Z
Example #12
Source File: model_vnet3d.py From LiTS---Liver-Tumor-Segmentation-Challenge with MIT License | 6 votes |
def __init__(self, image_height, image_width, image_depth, channels=1, costname=("dice coefficient",), inference=False, model_path=None): self.image_width = image_width self.image_height = image_height self.image_depth = image_depth self.channels = channels self.X = tf.placeholder("float", shape=[None, self.image_depth, self.image_height, self.image_width, self.channels]) self.Y_gt = tf.placeholder("float", shape=[None, self.image_depth, self.image_height, self.image_width, self.channels]) self.lr = tf.placeholder('float') self.phase = tf.placeholder(tf.bool) self.drop = tf.placeholder('float') self.Y_pred = _create_conv_net(self.X, self.image_depth, self.image_width, self.image_height, self.channels, self.phase, self.drop) self.cost = self.__get_cost(costname[0]) self.accuracy = -self.__get_cost(costname[0]) if inference: init = tf.global_variables_initializer() saver = tf.train.Saver() self.sess = tf.InteractiveSession() self.sess.run(init) saver.restore(self.sess, model_path)
Example #13
Source File: tensorlayer-layers.py From Conv3D_BICLSTM with MIT License | 6 votes |
def retrieve_seq_length_op2(data): """An op to compute the length of a sequence, from input shape of [batch_size, n_step(max)], it can be used when the features of padding (on right hand side) are all zeros. Parameters ----------- data : tensor [batch_size, n_step(max)] with zero padding on right hand side. Examples -------- >>> data = [[1,2,0,0,0], ... [1,2,3,0,0], ... [1,2,6,1,0]] >>> o = retrieve_seq_length_op2(data) >>> sess = tf.InteractiveSession() >>> sess.run(tf.initialize_all_variables()) >>> print(o.eval()) ... [2 3 4] """ return tf.reduce_sum(tf.cast(tf.greater(data, tf.zeros_like(data)), tf.int32), 1) # Dynamic RNN
Example #14
Source File: tensorflow_grad_inverter.py From ddpg-aigym with MIT License | 5 votes |
def __init__(self, action_bounds): self.sess = tf.InteractiveSession() self.action_size = len(action_bounds[0]) self.action_input = tf.placeholder(tf.float32, [None, self.action_size]) self.pmax = tf.constant(action_bounds[0], dtype = tf.float32) self.pmin = tf.constant(action_bounds[1], dtype = tf.float32) self.prange = tf.constant([x - y for x, y in zip(action_bounds[0],action_bounds[1])], dtype = tf.float32) self.pdiff_max = tf.div(-self.action_input+self.pmax, self.prange) self.pdiff_min = tf.div(self.action_input - self.pmin, self.prange) self.zeros_act_grad_filter = tf.zeros([self.action_size]) self.act_grad = tf.placeholder(tf.float32, [None, self.action_size]) self.grad_inverter = tf.select(tf.greater(self.act_grad, self.zeros_act_grad_filter), tf.mul(self.act_grad, self.pdiff_max), tf.mul(self.act_grad, self.pdiff_min))
Example #15
Source File: actor_net.py From ddpg-aigym with MIT License | 5 votes |
def __init__(self,num_states,num_actions): self.g=tf.Graph() with self.g.as_default(): self.sess = tf.InteractiveSession() #actor network model parameters: self.W1_a, self.B1_a, self.W2_a, self.B2_a, self.W3_a, self.B3_a,\ self.actor_state_in, self.actor_model = self.create_actor_net(num_states, num_actions) #target actor network model parameters: self.t_W1_a, self.t_B1_a, self.t_W2_a, self.t_B2_a, self.t_W3_a, self.t_B3_a,\ self.t_actor_state_in, self.t_actor_model = self.create_actor_net(num_states, num_actions) #cost of actor network: self.q_gradient_input = tf.placeholder("float",[None,num_actions]) #gets input from action_gradient computed in critic network file self.actor_parameters = [self.W1_a, self.B1_a, self.W2_a, self.B2_a, self.W3_a, self.B3_a] self.parameters_gradients = tf.gradients(self.actor_model,self.actor_parameters,-self.q_gradient_input)#/BATCH_SIZE) self.optimizer = tf.train.AdamOptimizer(LEARNING_RATE).apply_gradients(zip(self.parameters_gradients,self.actor_parameters)) #initialize all tensor variable parameters: self.sess.run(tf.initialize_all_variables()) #To make sure actor and target have same intial parmameters copy the parameters: # copy target parameters self.sess.run([ self.t_W1_a.assign(self.W1_a), self.t_B1_a.assign(self.B1_a), self.t_W2_a.assign(self.W2_a), self.t_B2_a.assign(self.B2_a), self.t_W3_a.assign(self.W3_a), self.t_B3_a.assign(self.B3_a)]) self.update_target_actor_op = [ self.t_W1_a.assign(TAU*self.W1_a+(1-TAU)*self.t_W1_a), self.t_B1_a.assign(TAU*self.B1_a+(1-TAU)*self.t_B1_a), self.t_W2_a.assign(TAU*self.W2_a+(1-TAU)*self.t_W2_a), self.t_B2_a.assign(TAU*self.B2_a+(1-TAU)*self.t_B2_a), self.t_W3_a.assign(TAU*self.W3_a+(1-TAU)*self.t_W3_a), self.t_B3_a.assign(TAU*self.B3_a+(1-TAU)*self.t_B3_a)]
Example #16
Source File: transfer_cifar10_softmax_b1.py From deligan with MIT License | 5 votes |
def serialize_cifar_pool3(X,filename): print 'About to generate file: %s' % filename gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.1) sess = tf.InteractiveSession(config=tf.ConfigProto(gpu_options=gpu_options)) X_pool3 = batch_pool3_features(sess,X) np.save(filename,X_pool3)
Example #17
Source File: TripleTrainer.py From MassImageRetrieval with Apache License 2.0 | 5 votes |
def __init__(self, sample_creator=None, triple_model=None): self.sample_creator = sample_creator self.triple_model = triple_model self.batch_size = 2000 self.epochs = 100 self.plot_size = 60000 self.is_update = True self.xy = None self.sess = tf.InteractiveSession() self.saver = None self.log_save_dir = "./log/"
Example #18
Source File: ClusterTrainer.py From MassImageRetrieval with Apache License 2.0 | 5 votes |
def __init__(self, sample_creator=None, train_model=None): self.sample_creator = sample_creator self.train_model = train_model self.batch_size = 512 self.epochs = 4000 self.plot_size = 60000 self.is_update = True self.lr = 0.001 self.global_step = tf.Variable(0, trainable=False, name='global_step') self.model_param = None self.sess = tf.InteractiveSession() self.saver = None self.log_save_dir = "./log/cluster/"
Example #19
Source File: ImageSegmentor.py From CVTron with Apache License 2.0 | 5 votes |
def __init__(self, model_path, args): self.sess = tf.InteractiveSession() self.model_path = model_path self.resnet_model = args['resnet_model'] self.x = tf.placeholder("float",[None, None, None, 3]) self.network = deeplab_v3(self.x, args, is_training=False, reuse=False) self.pred = tf.argmax(self.network, axis=3)
Example #20
Source File: image_classifier.py From CVTron with Apache License 2.0 | 5 votes |
def __init__(self, model_name='vgg_19', model_path=MODEL_ZOO_PATH): self.model_name = model_name self.model_path = model_path if model_name not in ['vgg_19', 'inception_v3']: raise NotImplementedError self.download(self.model_path) self.sess = tf.InteractiveSession() if model_name == 'vgg_19': from cvtron.model_zoo.vgg.vgg_19 import VGG19 vgg19 = VGG19() self.x = tf.placeholder("float", [None, 224, 224, 3]) self.network = vgg19.inference(self.x) elif model_name == 'inception_v3': from cvtron.model_zoo.inception.inceptionV3 import InceptionV3 inception_config = { 'num_classes': 1001, 'is_training': False } inceptionv3 = InceptionV3(inception_config) self.x = tf.placeholder(tf.float32, shape=[None, 299, 299, 3]) self.network = inceptionv3.inference(self.x) else: raise ValueError('Only VGG 19 and Inception V3 are allowed') y = self.network.outputs self.probs = tf.nn.softmax(y, name="prob") self._init_model_()
Example #21
Source File: SpectraLearnPredict.py From SpectralMachine with GNU General Public License v3.0 | 5 votes |
def predTF(A, Cl, R, Root): print('==========================================================================\n') print('\033[1m Running Basic TensorFlow Prediction...\033[0m') import tensorflow as tf import tensorflow.contrib.learn as skflow from sklearn import preprocessing if tfDef.logCheckpoint == True: tf.logging.set_verbosity(tf.logging.INFO) tfTrainedData = Root + '.tfmodel' x,y,y_ = setupTFmodel(A, Cl) sess = tf.InteractiveSession() tf.global_variables_initializer().run() print(' Opening TF training model from:', tfTrainedData) saver = tf.train.Saver() saver.restore(sess, './' + tfTrainedData) res1 = sess.run(y, feed_dict={x: R}) res2 = sess.run(tf.argmax(y, 1), feed_dict={x: R}) sess.close() rosterPred = np.where(res1[0]>tfDef.thresholdProbabilityTFPred)[0] print('\n ==============================') print(' \033[1mTF\033[0m - Probability >',str(tfDef.thresholdProbabilityTFPred),'%') print(' ==============================') print(' Prediction\tProbability [%]') for i in range(rosterPred.shape[0]): print(' ',str(np.unique(Cl)[rosterPred][i]),'\t\t',str('{:.1f}'.format(res1[0][rosterPred][i]))) print(' ==============================\n') print('\033[1m Predicted value (TF): ' + str(np.unique(Cl)[res2][0]) + ' (Probability: ' + str('{:.1f}'.format(res1[0][res2][0])) + '%)\n' + '\033[0m' ) return np.unique(Cl)[res2][0], res1[0][res2][0] #**********************************************
Example #22
Source File: mnist_softmax.py From MachineLearning with Apache License 2.0 | 5 votes |
def main(_): mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True) # Create the model x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) y = tf.matmul(x, W) + b # Define loss and optimizer y_ = tf.placeholder(tf.float32, [None, 10]) # The raw formulation of cross-entropy, # # tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.nn.softmax(y)), # reduction_indices=[1])) # # can be numerically unstable. # # So here we use tf.nn.softmax_cross_entropy_with_logits on the raw # outputs of 'y', and then average across the batch. cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y, y_)) train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess = tf.InteractiveSession() # Train tf.global_variables_initializer().run() for _ in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) # Test trained model correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
Example #23
Source File: evaluate.py From MachineLearning with Apache License 2.0 | 5 votes |
def main(_): udacity_data.read_data(shuffe=False) with tf.Graph().as_default(): config = tf.ConfigProto() config.gpu_options.allocator_type = 'BFC' sess = tf.InteractiveSession(config=config) saver = tf.train.import_meta_graph(os.path.join(LOG_DIR, "steering.ckpt.meta")) saver.restore(sess, tf.train.latest_checkpoint(LOG_DIR)) graph = tf.get_default_graph() x_image = graph.get_tensor_by_name("x_image:0") y_label = graph.get_tensor_by_name("y_label:0") keep_prob = graph.get_tensor_by_name("keep_prob:0") logits = tf.get_collection("logits")[0] if os.path.exists(OUTPUT): os.remove(OUTPUT) for epoch in range(EPOCH): image_batch, label_batch = udacity_data.load_val_batch(BATCH_SIZE) feed_dict = { x_image: image_batch, y_label: label_batch, keep_prob: 0.6 } prediction = sess.run([logits], feed_dict) with open(OUTPUT, 'a') as out: for batch in range(BATCH_SIZE): out.write("%s %.10f\n" % (udacity_data.val_xs[epoch * BATCH_SIZE + batch], prediction[0][batch]))
Example #24
Source File: generate_ml_output.py From terrain-erosion-3-ways with MIT License | 5 votes |
def main(argv): # First argument is the path to the progressive_growing_of_gans clone. This # is needed to for proper loading of the weights via pickle. # Second argument is the network weights pickle file. # Third argument is the number of output samples to generate. Defaults to 20 if len(argv) < 3: print('Usage: %s path/to/progressive_growing_of_gans weights.pkl ' '[number_of_samples]' % argv[0]) sys.exit(-1) my_dir = os.path.dirname(argv[0]) pgog_path = argv[1] weight_path = argv[2] num_samples = int(argv[3]) if len(argv) >= 4 else 20 # Load the GAN tensors. tf.InteractiveSession() sys.path.append(pgog_path) with open(weight_path, 'rb') as f: G, D, Gs = pickle.load(f) # Generate input vectors. latents = np.random.randn(num_samples, *Gs.input_shapes[0][1:]) labels = np.zeros([latents.shape[0]] + Gs.input_shapes[1][1:]) # Run generator to create samples. samples = Gs.run(latents, labels) # Make output directory output_dir = os.path.join(my_dir, 'ml_outputs') try: os.mkdir(output_dir) except: pass # Write outputs. for idx in range(samples.shape[0]): sample = (np.clip(np.squeeze((samples[idx, 0, :, :] + 1.0) / 2), 0.0, 1.0) .astype('float64')) np.save(os.path.join(output_dir, '%d.npy' % idx), sample)
Example #25
Source File: slp_tf.py From SpectralMachine with GNU General Public License v3.0 | 5 votes |
def predTF(A, Cl, R, Root): print('==========================================================================\n') print('\033[1m Running Basic TensorFlow Prediction...\033[0m') import tensorflow as tf import tensorflow.contrib.learn as skflow from sklearn import preprocessing if tfDef.logCheckpoint == True: tf.logging.set_verbosity(tf.logging.INFO) tfTrainedData = Root + '.tfmodel' x,y,y_ = setupTFmodel(A, Cl) sess = tf.InteractiveSession() tf.global_variables_initializer().run() print(' Opening TF training model from:', tfTrainedData) saver = tf.train.Saver() saver.restore(sess, './' + tfTrainedData) res1 = sess.run(y, feed_dict={x: R}) res2 = sess.run(tf.argmax(y, 1), feed_dict={x: R}) sess.close() rosterPred = np.where(res1[0]>tfDef.thresholdProbabilityTFPred)[0] print('\n ==============================') print(' \033[1mTF\033[0m - Probability >',str(tfDef.thresholdProbabilityTFPred),'%') print(' ==============================') print(' Prediction\tProbability [%]') for i in range(rosterPred.shape[0]): print(' ',str(np.unique(Cl)[rosterPred][i]),'\t\t',str('{:.1f}'.format(res1[0][rosterPred][i]))) print(' ==============================\n') print('\033[1m Predicted value (TF): ' + str(np.unique(Cl)[res2][0]) + ' (Probability: ' + str('{:.1f}'.format(res1[0][res2][0])) + '%)\n' + '\033[0m' ) return np.unique(Cl)[res2][0], res1[0][res2][0] #**********************************************
Example #26
Source File: tf_util.py From stable-baselines with MIT License | 5 votes |
def single_threaded_session(make_default=False, graph=None): """ Returns a session which will only use a single CPU :param make_default: (bool) if this should return an InteractiveSession or a normal Session :param graph: (TensorFlow Graph) the graph of the session :return: (TensorFlow session) """ return make_session(num_cpu=1, make_default=make_default, graph=graph)
Example #27
Source File: slp_tf.py From SpectralMachine with GNU General Public License v3.0 | 5 votes |
def predTF(A, Cl, R, Root): print('==========================================================================\n') print('\033[1m Running Basic TensorFlow Prediction...\033[0m') import tensorflow as tf import tensorflow.contrib.learn as skflow from sklearn import preprocessing if tfDef.logCheckpoint: tf.logging.set_verbosity(tf.logging.INFO) tfTrainedData = Root + '.tfmodel' x,y,y_ = setupTFmodel(A, Cl) sess = tf.InteractiveSession() tf.global_variables_initializer().run() print(' Opening TF training model from:', tfTrainedData) saver = tf.train.Saver() saver.restore(sess, './' + tfTrainedData) res1 = sess.run(y, feed_dict={x: R}) res2 = sess.run(tf.argmax(y, 1), feed_dict={x: R}) sess.close() rosterPred = np.where(res1[0]>tfDef.thresholdProbabilityTFPred)[0] print('\n ==============================') print(' \033[1mTF\033[0m - Probability >',str(tfDef.thresholdProbabilityTFPred),'%') print(' ==============================') print(' Prediction\tProbability [%]') for i in range(rosterPred.shape[0]): print(' ',str(np.unique(Cl)[rosterPred][i]),'\t\t',str('{:.1f}'.format(res1[0][rosterPred][i]))) print(' ==============================\n') print('\033[1m Predicted value (TF): ' + str(np.unique(Cl)[res2][0]) + ' (Probability: ' + str('{:.1f}'.format(res1[0][res2][0])) + '%)\n' + '\033[0m' ) return np.unique(Cl)[res2][0], res1[0][res2][0] #**********************************************
Example #28
Source File: SpectraLearnPredict.py From SpectralMachine with GNU General Public License v3.0 | 5 votes |
def predTF(A, Cl, R, Root): print('==========================================================================\n') print('\033[1m Running Basic TensorFlow Prediction...\033[0m') import tensorflow as tf import tensorflow.contrib.learn as skflow from sklearn import preprocessing if tfDef.logCheckpoint == True: tf.logging.set_verbosity(tf.logging.INFO) tfTrainedData = Root + '.tfmodel' x,y,y_ = setupTFmodel(A, Cl) sess = tf.InteractiveSession() tf.global_variables_initializer().run() print(' Opening TF training model from:', tfTrainedData) saver = tf.train.Saver() saver.restore(sess, './' + tfTrainedData) res1 = sess.run(y, feed_dict={x: R}) res2 = sess.run(tf.argmax(y, 1), feed_dict={x: R}) sess.close() rosterPred = np.where(res1[0]>tfDef.thresholdProbabilityTFPred)[0] print('\n ==============================') print(' \033[1mTF\033[0m - Probability >',str(tfDef.thresholdProbabilityTFPred),'%') print(' ==============================') print(' Prediction\tProbability [%]') for i in range(rosterPred.shape[0]): print(' ',str(np.unique(Cl)[rosterPred][i]),'\t\t',str('{:.1f}'.format(res1[0][rosterPred][i]))) print(' ==============================\n') print('\033[1m Predicted value (TF): ' + str(np.unique(Cl)[res2][0]) + ' (Probability: ' + str('{:.1f}'.format(res1[0][res2][0])) + '%)\n' + '\033[0m' ) return np.unique(Cl)[res2][0], res1[0][res2][0] #**********************************************
Example #29
Source File: padding.py From Neural-Network-Programming-with-TensorFlow with MIT License | 5 votes |
def main(): session = tf.InteractiveSession() input_batch = tf.constant([ [ # First Input (6x6x1) [[0.0], [1.0], [2.0], [3.0], [4.0], [5.0]], [[0.1], [1.1], [2.1], [3.1], [4.1], [5.1]], [[0.2], [1.2], [2.2], [3.2], [4.2], [5.2]], [[0.3], [1.3], [2.3], [3.3], [4.3], [5.3]], [[0.4], [1.4], [2.4], [3.4], [4.4], [5.4]], [[0.5], [1.5], [2.5], [3.5], [4.5], [5.5]], ], ]) kernel = tf.constant([ # Kernel (3x3x1) [[[0.0]], [[0.5]], [[0.0]]], [[[0.0]], [[0.5]], [[0.0]]], [[[0.0]], [[0.5]], [[0.0]]] ]) # NOTE: the change in the size of the strides parameter. conv2d = tf.nn.conv2d(input_batch, kernel, strides=[1, 3, 3, 1], padding='SAME') conv2d_output = session.run(conv2d) print(conv2d_output) conv2d = tf.nn.conv2d(input_batch, kernel, strides=[1, 3, 3, 1], padding='VALID') conv2d_output = session.run(conv2d) print(conv2d_output)
Example #30
Source File: SpectraLearnPredict.py From SpectralMachine with GNU General Public License v3.0 | 5 votes |
def predTF(A, Cl, R, Root): print('==========================================================================\n') print('\033[1m Running Basic TensorFlow Prediction...\033[0m') import tensorflow as tf import tensorflow.contrib.learn as skflow from sklearn import preprocessing if tfDef.logCheckpoint == True: tf.logging.set_verbosity(tf.logging.INFO) tfTrainedData = Root + '.tfmodel' x,y,y_ = setupTFmodel(A, Cl) sess = tf.InteractiveSession() tf.global_variables_initializer().run() print(' Opening TF training model from:', tfTrainedData) saver = tf.train.Saver() saver.restore(sess, './' + tfTrainedData) res1 = sess.run(y, feed_dict={x: R}) res2 = sess.run(tf.argmax(y, 1), feed_dict={x: R}) sess.close() rosterPred = np.where(res1[0]>tfDef.thresholdProbabilityTFPred)[0] print('\n ==============================') print(' \033[1mTF\033[0m - Probability >',str(tfDef.thresholdProbabilityTFPred),'%') print(' ==============================') print(' Prediction\tProbability [%]') for i in range(rosterPred.shape[0]): print(' ',str(np.unique(Cl)[rosterPred][i]),'\t\t',str('{:.1f}'.format(res1[0][rosterPred][i]))) print(' ==============================\n') print('\033[1m Predicted value (TF): ' + str(np.unique(Cl)[res2][0]) + ' (Probability: ' + str('{:.1f}'.format(res1[0][res2][0])) + '%)\n' + '\033[0m' ) return np.unique(Cl)[res2][0], res1[0][res2][0] #**********************************************