Python tensorflow.parse_single_example() Examples
The following are 30
code examples of tensorflow.parse_single_example().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: dataset.py From DNA-GAN with MIT License | 7 votes |
def parse_fn(self, serialized_example): features={ 'image/id_name': tf.FixedLenFeature([], tf.string), 'image/height' : tf.FixedLenFeature([], tf.int64), 'image/width' : tf.FixedLenFeature([], tf.int64), 'image/encoded': tf.FixedLenFeature([], tf.string), } for name in self.feature_list: features[name] = tf.FixedLenFeature([], tf.int64) example = tf.parse_single_example(serialized_example, features=features) image = tf.decode_raw(example['image/encoded'], tf.uint8) raw_height = tf.cast(example['image/height'], tf.int32) raw_width = tf.cast(example['image/width'], tf.int32) image = tf.reshape(image, [raw_height, raw_width, 3]) image = tf.image.resize_images(image, size=[self.height, self.width]) # from IPython import embed; embed(); exit() feature_val_list = [tf.cast(example[name], tf.float32) for name in self.feature_list] return image, feature_val_list
Example #2
Source File: model.py From cloudml-dist-mnist-example with Apache License 2.0 | 6 votes |
def read_and_decode(filename_queue): reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example( serialized_example, features={ 'image_raw': tf.FixedLenFeature([], tf.string), 'label': tf.FixedLenFeature([], tf.int64), }) image = tf.decode_raw(features['image_raw'], tf.uint8) image.set_shape([784]) image = tf.cast(image, tf.float32) * (1. / 255) label = tf.cast(features['label'], tf.int32) return image, label
Example #3
Source File: vfn_train.py From view-finding-network with GNU General Public License v3.0 | 6 votes |
def read_and_decode(filename_queue): reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example( serialized_example, # Defaults are not specified since both keys are required. features={ 'image_raw': tf.FixedLenFeature([], tf.string), }) image = tf.decode_raw(features['image_raw'], tf.uint8) image = tf.reshape(image, [227, 227, 6]) # Convert from [0, 255] -> [-0.5, 0.5] floats. image = tf.cast(image, tf.float32) * (1. / 255) - 0.5 return tf.split(image, 2, 2) # 3rd dimension two parts
Example #4
Source File: vfn_train.py From view-finding-network with GNU General Public License v3.0 | 6 votes |
def read_and_decode_aug(filename_queue): reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example( serialized_example, # Defaults are not specified since both keys are required. features={ 'image_raw': tf.FixedLenFeature([], tf.string), }) image = tf.decode_raw(features['image_raw'], tf.uint8) image = tf.image.random_flip_left_right(tf.reshape(image, [227, 227, 6])) # Convert from [0, 255] -> [-0.5, 0.5] floats. image = tf.cast(image, tf.float32) * (1. / 255) - 0.5 image = tf.image.random_brightness(image, 0.01) image = tf.image.random_contrast(image, 0.95, 1.05) return tf.split(image, 2, 2) # 3rd dimension two parts
Example #5
Source File: dump_tfrecord.py From cwavegan with MIT License | 6 votes |
def _mapper(example_proto): features = { 'samples': tf.FixedLenSequenceFeature([1], tf.float32, allow_missing=True), 'label': tf.FixedLenSequenceFeature([], tf.string, allow_missing=True) } example = tf.parse_single_example(example_proto, features) wav = example['samples'][:, 0] wav = wav[:16384] wav_len = tf.shape(wav)[0] wav = tf.pad(wav, [[0, 16384 - wav_len]]) label = tf.reduce_join(example['label'], 0) return wav, label
Example #6
Source File: get_data.py From glow with MIT License | 6 votes |
def parse_tfrecord_tf(record, res, rnd_crop): features = tf.parse_single_example(record, features={ 'shape': tf.FixedLenFeature([3], tf.int64), 'data': tf.FixedLenFeature([], tf.string), 'label': tf.FixedLenFeature([1], tf.int64)}) # label is always 0 if uncondtional # to get CelebA attr, add 'attr': tf.FixedLenFeature([40], tf.int64) data, label, shape = features['data'], features['label'], features['shape'] label = tf.cast(tf.reshape(label, shape=[]), dtype=tf.int32) img = tf.decode_raw(data, tf.uint8) if rnd_crop: # For LSUN Realnvp only - random crop img = tf.reshape(img, shape) img = tf.random_crop(img, [res, res, 3]) img = tf.reshape(img, [res, res, 3]) return img, label # to get CelebA attr, also return attr
Example #7
Source File: inputs_test.py From tensorflow_fasttext with MIT License | 6 votes |
def test_parse_spec(): fc = FeatureColumns( True, False, VOCAB_FILE, VOCAB_SIZE, 10, 10, 1000, 10) parse_spec = tf.feature_column.make_parse_example_spec(fc) print parse_spec reader = tf.python_io.tf_record_iterator(INPUT_FILE) sess = tf.Session() for record in reader: example = tf.parse_single_example( record, parse_spec) print sess.run(example) break
Example #8
Source File: input_fn.py From 3D-Unet--Tensorflow with GNU General Public License v3.0 | 6 votes |
def decode_pred(serialized_example): """Parses prediction data from the given `serialized_example`.""" features = tf.parse_single_example( serialized_example, features={ 'T1':tf.FixedLenFeature([],tf.string), 'T2':tf.FixedLenFeature([], tf.string) }) patch_shape = [conf.patch_size, conf.patch_size, conf.patch_size] # Convert from a scalar string tensor image_T1 = tf.decode_raw(features['T1'], tf.int16) image_T1 = tf.reshape(image_T1, patch_shape) image_T2 = tf.decode_raw(features['T2'], tf.int16) image_T2 = tf.reshape(image_T2, patch_shape) # Convert dtype. image_T1 = tf.cast(image_T1, tf.float32) image_T2 = tf.cast(image_T2, tf.float32) label = tf.zeros(image_T1.shape) # pseudo label return image_T1, image_T2, label
Example #9
Source File: trainer.py From cloudml-samples with Apache License 2.0 | 6 votes |
def dataset_parser(value): keys_to_features = { 'image/encoded': tf.FixedLenFeature((), tf.string, ''), 'image/format': tf.FixedLenFeature((), tf.string, 'jpeg'), 'image/class/label': tf.FixedLenFeature([], tf.int64, -1) } parsed = tf.parse_single_example(value, keys_to_features) image_bytes = tf.reshape(parsed['image/encoded'], shape=[]) # Preprocess the images. image = tf.image.decode_jpeg(image_bytes) image = tf.image.random_flip_left_right(image) image = tf.image.resize_images(image, [IMAGE_SIZE, IMAGE_SIZE]) image = tf.image.convert_image_dtype( image, dtype=tf.bfloat16) # Subtract one so that labels are in [0, 1000). label = tf.cast( tf.reshape(parsed['image/class/label'], shape=[]), dtype=tf.int32) - 1 return image, label
Example #10
Source File: reader.py From CapsLayer with Apache License 2.0 | 6 votes |
def parse_fun(serialized_example): """ Data parsing function. """ features = tf.parse_single_example(serialized_example, features={'image': tf.FixedLenFeature([], tf.string), 'label': tf.FixedLenFeature([], tf.int64), 'height': tf.FixedLenFeature([], tf.int64), 'width': tf.FixedLenFeature([], tf.int64), 'depth': tf.FixedLenFeature([], tf.int64)}) height = tf.cast(features['height'], tf.int32) width = tf.cast(features['width'], tf.int32) depth = tf.cast(features['depth'], tf.int32) image = tf.decode_raw(features['image'], tf.float32) image = tf.reshape(image, shape=[height * width * depth]) image.set_shape([28 * 28 * 1]) image = tf.cast(image, tf.float32) * (1. / 255) label = tf.cast(features['label'], tf.int32) features = {'images': image, 'labels': label} return(features)
Example #11
Source File: reader.py From CapsLayer with Apache License 2.0 | 6 votes |
def parse_fun(serialized_example): """ Data parsing function. """ features = tf.parse_single_example(serialized_example, features={'image': tf.FixedLenFeature([], tf.string), 'label': tf.FixedLenFeature([], tf.int64), 'height': tf.FixedLenFeature([], tf.int64), 'width': tf.FixedLenFeature([], tf.int64), 'depth': tf.FixedLenFeature([], tf.int64)}) height = tf.cast(features['height'], tf.int32) width = tf.cast(features['width'], tf.int32) depth = tf.cast(features['depth'], tf.int32) image = tf.decode_raw(features['image'], tf.float32) image = tf.reshape(image, shape=[height * width * depth]) image.set_shape([28 * 28 * 1]) image = tf.cast(image, tf.float32) * (1. / 255) label = tf.cast(features['label'], tf.int32) features = {'images': image, 'labels': label} return(features)
Example #12
Source File: read_tfrecord_data.py From tensorflow_input_image_by_tfrecord with Apache License 2.0 | 6 votes |
def read_and_decode(filename_queue): reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example(serialized_example, features = { "image/encoded": tf.FixedLenFeature([], tf.string), "image/height": tf.FixedLenFeature([], tf.int64), "image/width": tf.FixedLenFeature([], tf.int64), "image/filename": tf.FixedLenFeature([], tf.string), "image/class/label": tf.FixedLenFeature([], tf.int64),}) image_encoded = features["image/encoded"] image_raw = tf.image.decode_jpeg(image_encoded, channels=3) current_image_object = image_object() current_image_object.image = tf.image.resize_image_with_crop_or_pad(image_raw, FLAGS.image_height, FLAGS.image_width) # cropped image with size 299x299 # current_image_object.image = tf.cast(image_crop, tf.float32) * (1./255) - 0.5 current_image_object.height = features["image/height"] # height of the raw image current_image_object.width = features["image/width"] # width of the raw image current_image_object.filename = features["image/filename"] # filename of the raw image current_image_object.label = tf.cast(features["image/class/label"], tf.int32) # label of the raw image return current_image_object
Example #13
Source File: inputs.py From ffn with Apache License 2.0 | 6 votes |
def load_patch_coordinates_from_filename_queue(filename_queue): """Loads coordinates and volume names from filename queue. Args: filename_queue: Tensorflow queue created from create_filename_queue() Returns: Tuple of coordinates (shape `[1, 3]`) and volume name (shape `[1]`) tensors. """ record_options = tf.python_io.TFRecordOptions( tf.python_io.TFRecordCompressionType.GZIP) keys, protos = tf.TFRecordReader(options=record_options).read(filename_queue) examples = tf.parse_single_example(protos, features=dict( center=tf.FixedLenFeature(shape=[1, 3], dtype=tf.int64), label_volume_name=tf.FixedLenFeature(shape=[1], dtype=tf.string), )) coord = examples['center'] volname = examples['label_volume_name'] return coord, volname
Example #14
Source File: train.py From centernet_tensorflow_wilderface_voc with MIT License | 6 votes |
def parse_color_data(example_proto): features = {"img_raw": tf.FixedLenFeature([], tf.string), "label": tf.FixedLenFeature([], tf.string), "width": tf.FixedLenFeature([], tf.int64), "height": tf.FixedLenFeature([], tf.int64)} parsed_features = tf.parse_single_example(example_proto, features) img = parsed_features["img_raw"] img = tf.decode_raw(img, tf.uint8) width = parsed_features["width"] height = parsed_features["height"] img = tf.reshape(img, [height, width, 3]) img = tf.cast(img, tf.float32) * (1. / 255.) - 0.5 label = parsed_features["label"] label = tf.decode_raw(label, tf.float32) return img, label
Example #15
Source File: loader.py From SketchCNN with MIT License | 6 votes |
def _read_raw(self): """Read raw data from TFRecord. Returns: :return: data list [input_raw, label_raw]. """ self._reader = tf.TFRecordReader() _, serialized_example = self._reader.read(self._queue) features = tf.parse_single_example(serialized_example, features={ 'name': tf.FixedLenFeature([], tf.string), 'block': tf.FixedLenFeature([], tf.string) }) input_raw, label_raw = decode_block(features['block'], tensor_size=self._raw_size) if self._with_key: return input_raw, label_raw, features['name'] return input_raw, label_raw
Example #16
Source File: util.py From R-Net with MIT License | 5 votes |
def get_record_parser(config, is_test=False): def parse(example): para_limit = config.test_para_limit if is_test else config.para_limit ques_limit = config.test_ques_limit if is_test else config.ques_limit char_limit = config.char_limit features = tf.parse_single_example(example, features={ "context_idxs": tf.FixedLenFeature([], tf.string), "ques_idxs": tf.FixedLenFeature([], tf.string), "context_char_idxs": tf.FixedLenFeature([], tf.string), "ques_char_idxs": tf.FixedLenFeature([], tf.string), "y1": tf.FixedLenFeature([], tf.string), "y2": tf.FixedLenFeature([], tf.string), "id": tf.FixedLenFeature([], tf.int64) }) context_idxs = tf.reshape(tf.decode_raw( features["context_idxs"], tf.int32), [para_limit]) ques_idxs = tf.reshape(tf.decode_raw( features["ques_idxs"], tf.int32), [ques_limit]) context_char_idxs = tf.reshape(tf.decode_raw( features["context_char_idxs"], tf.int32), [para_limit, char_limit]) ques_char_idxs = tf.reshape(tf.decode_raw( features["ques_char_idxs"], tf.int32), [ques_limit, char_limit]) y1 = tf.reshape(tf.decode_raw( features["y1"], tf.float32), [para_limit]) y2 = tf.reshape(tf.decode_raw( features["y2"], tf.float32), [para_limit]) qa_id = features["id"] return context_idxs, ques_idxs, context_char_idxs, ques_char_idxs, y1, y2, qa_id return parse
Example #17
Source File: resnet.py From DeepFolding with BSD 3-Clause "New" or "Revised" License | 5 votes |
def build_input(self): with tf.device('/cpu:0'): def parser(record): keys_to_features = { 'x1d' :tf.FixedLenFeature([], tf.string), 'x2d' :tf.FixedLenFeature([], tf.string), 'y' :tf.FixedLenFeature([], tf.string), 'size':tf.FixedLenFeature([], tf.int64)} parsed = tf.parse_single_example(record, keys_to_features) x1d = tf.decode_raw(parsed['x1d'], tf.float32) x2d = tf.decode_raw(parsed['x2d'] ,tf.float32) size = parsed['size'] x1d = tf.reshape(x1d, tf.stack([size, -1])) x2d = tf.reshape(x2d, tf.stack([size, size, -1])) y = tf.decode_raw(parsed['y'],tf.int16) y = tf.cast(y, tf.float32) y = tf.reshape(y, tf.stack([size, size])) return x1d, x2d, y, size dataset = tf.data.TFRecordDataset(self.input_tfrecord_files) dataset = dataset.map(parser, num_parallel_calls=64) dataset = dataset.prefetch(1024) dataset = dataset.shuffle(buffer_size=512) dataset = dataset.padded_batch(self.train_config.batch_size, padded_shapes=([PADDING_FULL_LEN, self.x1d_channel_dim], [PADDING_FULL_LEN, PADDING_FULL_LEN, self.x2d_channel_dim], [PADDING_FULL_LEN, PADDING_FULL_LEN], []), padding_values=(0.0, 0.0, -1.0, np.int64(PADDING_FULL_LEN))) iterator = dataset.make_initializable_iterator() x1d, x2d, y, size = iterator.get_next() return x1d, x2d, y, size, iterator
Example #18
Source File: OxFlowers_BCNN_85.py From OxFlowers_BCNN with MIT License | 5 votes |
def parse_function(example_proto): """parse function is used to parse a single TFRecord example in the dataset.""" # Parses a single Example proto. # Returns a dict mapping feature keys to Tensor and SparseTensor values. features = tf.parse_single_example(example_proto,features={ 'label': tf.FixedLenFeature([], tf.int64), 'img_raw' : tf.FixedLenFeature([], tf.string),}) # Reinterpret the bytes of a string as a vector of numbers. imgs = tf.decode_raw(features['img_raw'], tf.uint8) # Reshapes a tensor. imgs = tf.reshape(imgs, [ImageWidth, ImageHeight, 3]) # cast the data from (0, 255) to (-0.5, 0.5) # (-0.5, 0.5) may be better than (0, 1). imgs = tf.cast(imgs, tf.float32) * (1. / 255) - 0.5 labels = tf.cast(features['label'], tf.int64) return {'x': imgs}, labels
Example #19
Source File: run_bert_open_qa_eval.py From XQA with MIT License | 5 votes |
def input_fn_builder(input_file, seq_length, drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" name_to_features = { "unique_ids": tf.FixedLenFeature([], tf.int64), "input_ids": tf.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length], tf.int64), } def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.to_int32(t) example[name] = t return example def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] # For training, we want a lot of parallel reading and shuffling. # For eval, we want no shuffling and parallel reading doesn't matter. d = tf.data.TFRecordDataset(input_file) d = d.apply( tf.contrib.data.map_and_batch( lambda record: _decode_record(record, name_to_features), batch_size=batch_size, drop_remainder=drop_remainder)) return d return input_fn
Example #20
Source File: OxFlowers_CNN_75.py From OxFlowers_BCNN with MIT License | 5 votes |
def read_and_decode(filename): """ read and decode a TFRecords file. returns numpy array objects. pipeline: TFRecords --> queue --> serialized_example --> dict. """ # Output strings (e.g. filenames) to a queue for an input pipeline. filename_queue = tf.train.string_input_producer([filename]) # print(filename_queue) # A Reader that outputs the records from a TFRecords file. reader = tf.TFRecordReader() # reader.read(queue) # Args queue: A Queue or a mutable string Tensor representing a handle to a Queue, with string work items. # Returns: A tuple of Tensors (key, value). key: A string scalar Tensor. value: A string scalar Tensor. _, serialized_example = reader.read(filename_queue) # print(serialized_example) # Parses a single Example proto. # Returns a dict mapping feature keys to Tensor and SparseTensor values. features = tf.parse_single_example(serialized_example,features={ 'label': tf.FixedLenFeature([], tf.int64), 'img_raw' : tf.FixedLenFeature([], tf.string),}) # Reinterpret the bytes of a string as a vector of numbers. imgs = tf.decode_raw(features['img_raw'], tf.uint8) # print(img.dtype) # print(img.shape) # Reshapes a tensor. imgs = tf.reshape(imgs, [-1, ImageWidth, ImageHeight, ImageChannels]) # cast the data from (0, 255) to (-0.5, 0.5) # (-0.5, 0.5) may be better than (0, 1). imgs = tf.cast(imgs, tf.float32) * (1. / 255) - 0.5 labels = tf.cast(features['label'], tf.int64) # print(type(imgs)) # print(imgs.shape) # print(type(labels)) # print(labels.shape) return imgs, labels
Example #21
Source File: detection_inference.py From ros_people_object_detection_tensorflow with Apache License 2.0 | 5 votes |
def build_input(tfrecord_paths): """Builds the graph's input. Args: tfrecord_paths: List of paths to the input TFRecords Returns: serialized_example_tensor: The next serialized example. String scalar Tensor image_tensor: The decoded image of the example. Uint8 tensor, shape=[1, None, None,3] """ filename_queue = tf.train.string_input_producer( tfrecord_paths, shuffle=False, num_epochs=1) tf_record_reader = tf.TFRecordReader() _, serialized_example_tensor = tf_record_reader.read(filename_queue) features = tf.parse_single_example( serialized_example_tensor, features={ standard_fields.TfExampleFields.image_encoded: tf.FixedLenFeature([], tf.string), }) encoded_image = features[standard_fields.TfExampleFields.image_encoded] image_tensor = tf.image.decode_image(encoded_image, channels=3) image_tensor.set_shape([None, None, 3]) image_tensor = tf.expand_dims(image_tensor, 0) return serialized_example_tensor, image_tensor
Example #22
Source File: coco.py From FastMaskRCNN with Apache License 2.0 | 5 votes |
def read(tfrecords_filename): if not isinstance(tfrecords_filename, list): tfrecords_filename = [tfrecords_filename] filename_queue = tf.train.string_input_producer( tfrecords_filename, num_epochs=100) options = tf.python_io.TFRecordOptions(TFRecordCompressionType.ZLIB) reader = tf.TFRecordReader(options=options) _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example( serialized_example, features={ 'image/img_id': tf.FixedLenFeature([], tf.int64), 'image/encoded': tf.FixedLenFeature([], tf.string), 'image/height': tf.FixedLenFeature([], tf.int64), 'image/width': tf.FixedLenFeature([], tf.int64), 'label/num_instances': tf.FixedLenFeature([], tf.int64), 'label/gt_masks': tf.FixedLenFeature([], tf.string), 'label/gt_boxes': tf.FixedLenFeature([], tf.string), 'label/encoded': tf.FixedLenFeature([], tf.string), }) # image = tf.image.decode_jpeg(features['image/encoded'], channels=3) img_id = tf.cast(features['image/img_id'], tf.int32) ih = tf.cast(features['image/height'], tf.int32) iw = tf.cast(features['image/width'], tf.int32) num_instances = tf.cast(features['label/num_instances'], tf.int32) image = tf.decode_raw(features['image/encoded'], tf.uint8) imsize = tf.size(image) image = tf.cond(tf.equal(imsize, ih * iw), \ lambda: tf.image.grayscale_to_rgb(tf.reshape(image, (ih, iw, 1))), \ lambda: tf.reshape(image, (ih, iw, 3))) gt_boxes = tf.decode_raw(features['label/gt_boxes'], tf.float32) gt_boxes = tf.reshape(gt_boxes, [num_instances, 5]) gt_masks = tf.decode_raw(features['label/gt_masks'], tf.uint8) gt_masks = tf.cast(gt_masks, tf.int32) gt_masks = tf.reshape(gt_masks, [num_instances, ih, iw]) return image, ih, iw, gt_boxes, gt_masks, num_instances, img_id
Example #23
Source File: fully_connected_reader.py From tensorflow_input_image_by_tfrecord with Apache License 2.0 | 5 votes |
def read_and_decode(filename_queue): reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example( serialized_example, # Defaults are not specified since both keys are required. features={ 'image/encoded': tf.FixedLenFeature([], tf.string), 'image/class/label': tf.FixedLenFeature([], tf.int64), }) # Convert from a scalar string tensor (whose single string has # length mnist.IMAGE_PIXELS) to a uint8 tensor with shape # [mnist.IMAGE_PIXELS]. image = tf.decode_raw(features['image/encoded'], tf.uint8) image.set_shape([128*128]) # OPTIONAL: Could reshape into a 28x28 image and apply distortions # here. Since we are not applying any distortions in this # example, and the next step expects the image to be flattened # into a vector, we don't bother. # Convert from [0, 255] -> [-0.5, 0.5] floats. image = tf.cast(image, tf.float32) * (1. / 255) - 0.5 # Convert label from a scalar uint8 tensor to an int32 scalar. label = tf.cast(features['image/class/label'], tf.int32) return image, label
Example #24
Source File: OxFlowers_CNN_75.py From OxFlowers_BCNN with MIT License | 5 votes |
def parse_function(example_proto): """parse function is used to parse a single TFRecord example in the dataset.""" # Parses a single Example proto. # Returns a dict mapping feature keys to Tensor and SparseTensor values. features = tf.parse_single_example(example_proto,features={ 'label': tf.FixedLenFeature([], tf.int64), 'img_raw' : tf.FixedLenFeature([], tf.string),}) # Reinterpret the bytes of a string as a vector of numbers. imgs = tf.decode_raw(features['img_raw'], tf.uint8) # Reshapes a tensor. imgs = tf.reshape(imgs, [ImageWidth, ImageHeight, 3]) # cast the data from (0, 255) to (-0.5, 0.5) # (-0.5, 0.5) may be better than (0, 1). imgs = tf.cast(imgs, tf.float32) * (1. / 255) - 0.5 labels = tf.cast(features['label'], tf.int64) return {'x': imgs}, labels
Example #25
Source File: read_tfrecord.py From R2CNN_Faster-RCNN_Tensorflow with MIT License | 5 votes |
def read_single_example_and_decode(filename_queue): # tfrecord_options = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.ZLIB) # reader = tf.TFRecordReader(options=tfrecord_options) reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example( serialized=serialized_example, features={ 'img_name': tf.FixedLenFeature([], tf.string), 'img_height': tf.FixedLenFeature([], tf.int64), 'img_width': tf.FixedLenFeature([], tf.int64), 'img': tf.FixedLenFeature([], tf.string), 'gtboxes_and_label': tf.FixedLenFeature([], tf.string), 'num_objects': tf.FixedLenFeature([], tf.int64) } ) img_name = features['img_name'] img_height = tf.cast(features['img_height'], tf.int32) img_width = tf.cast(features['img_width'], tf.int32) img = tf.decode_raw(features['img'], tf.uint8) img = tf.reshape(img, shape=[img_height, img_width, 3]) gtboxes_and_label = tf.decode_raw(features['gtboxes_and_label'], tf.int32) gtboxes_and_label = tf.reshape(gtboxes_and_label, [-1, 9]) num_objects = tf.cast(features['num_objects'], tf.int32) return img_name, img, gtboxes_and_label, num_objects
Example #26
Source File: generate.py From glow with MIT License | 5 votes |
def parse_image(max_res): def _process_image(img): img = centre_crop(img) img = tf.image.resize_images( img, [max_res, max_res], method=_DOWNSAMPLING) img = tf.cast(img, 'float32') resolution_log2 = int(np.log2(max_res)) q_imgs = [] for lod in range(resolution_log2 - 1): if lod: img = downsample(img) quant = x_to_uint8(img) q_imgs.append(quant) return q_imgs def _parse_image(example): feature_map = { 'image/encoded': tf.FixedLenFeature([], dtype=tf.string, default_value=''), 'image/class/label': tf.FixedLenFeature([1], dtype=tf.int64, default_value=-1) } features = tf.parse_single_example(example, feature_map) img, label = features['image/encoded'], features['image/class/label'] label = tf.cast(tf.reshape(label, shape=[]), dtype=tf.int32) - 1 img = tf.image.decode_jpeg(img, channels=_NUM_CHANNELS) imgs = _process_image(img) parsed = (label, *imgs) return parsed return _parse_image
Example #27
Source File: reader.py From CycleGAN-TensorFlow with MIT License | 5 votes |
def feed(self): """ Returns: images: 4D tensor [batch_size, image_width, image_height, image_depth] """ with tf.name_scope(self.name): filename_queue = tf.train.string_input_producer([self.tfrecords_file]) reader = tf.TFRecordReader() _, serialized_example = self.reader.read(filename_queue) features = tf.parse_single_example( serialized_example, features={ 'image/file_name': tf.FixedLenFeature([], tf.string), 'image/encoded_image': tf.FixedLenFeature([], tf.string), }) image_buffer = features['image/encoded_image'] image = tf.image.decode_jpeg(image_buffer, channels=3) image = self._preprocess(image) images = tf.train.shuffle_batch( [image], batch_size=self.batch_size, num_threads=self.num_threads, capacity=self.min_queue_examples + 3*self.batch_size, min_after_dequeue=self.min_queue_examples ) tf.summary.image('_input', images) return images
Example #28
Source File: generate.py From glow with MIT License | 5 votes |
def parse_celeba_image(max_res, transpose=False): def _process_image(img): img = tf.cast(img, 'float32') resolution_log2 = int(np.log2(max_res)) q_imgs = [] for lod in range(resolution_log2 - 1): if lod: img = downsample(img) quant = x_to_uint8(img) q_imgs.append(quant) return q_imgs def _parse_image(example): features = tf.parse_single_example(example, features={ 'shape': tf.FixedLenFeature([3], tf.int64), 'data': tf.FixedLenFeature([], tf.string), 'attr': tf.FixedLenFeature([40], tf.int64)}) shape = features['shape'] data = features['data'] attr = features['attr'] data = tf.decode_raw(data, tf.uint8) img = tf.reshape(data, shape) if transpose: img = tf.transpose(img, (1, 2, 0)) # CHW -> HWC imgs = _process_image(img) parsed = (attr, *imgs) return parsed return _parse_image
Example #29
Source File: pretrain_on_vcr.py From HGL-pytorch with MIT License | 5 votes |
def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.to_int32(t) example[name] = t return example
Example #30
Source File: OxFlowers_BCNN_85.py From OxFlowers_BCNN with MIT License | 5 votes |
def read_and_decode(filename): """ read and decode a TFRecords file. returns numpy array objects. pipeline: TFRecords --> queue --> serialized_example --> dict. """ # Output strings (e.g. filenames) to a queue for an input pipeline. filename_queue = tf.train.string_input_producer([filename]) # print(filename_queue) # A Reader that outputs the records from a TFRecords file. reader = tf.TFRecordReader() # reader.read(queue) # Args queue: A Queue or a mutable string Tensor representing a handle to a Queue, with string work items. # Returns: A tuple of Tensors (key, value). key: A string scalar Tensor. value: A string scalar Tensor. _, serialized_example = reader.read(filename_queue) # print(serialized_example) # Parses a single Example proto. # Returns a dict mapping feature keys to Tensor and SparseTensor values. features = tf.parse_single_example(serialized_example,features={ 'label': tf.FixedLenFeature([], tf.int64), 'img_raw' : tf.FixedLenFeature([], tf.string),}) # Reinterpret the bytes of a string as a vector of numbers. imgs = tf.decode_raw(features['img_raw'], tf.uint8) # print(img.dtype) # print(img.shape) # Reshapes a tensor. imgs = tf.reshape(imgs, [-1, ImageWidth, ImageHeight, ImageChannels]) # cast the data from (0, 255) to (-0.5, 0.5) # (-0.5, 0.5) may be better than (0, 1). imgs = tf.cast(imgs, tf.float32) * (1. / 255) - 0.5 labels = tf.cast(features['label'], tf.int64) # print(type(imgs)) # print(imgs.shape) # print(type(labels)) # print(labels.shape) return imgs, labels