Python tensorflow.OptimizerOptions() Examples
The following are 30
code examples of tensorflow.OptimizerOptions().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: trainer_lib.py From fine-lm with MIT License | 6 votes |
def create_session_config(log_device_placement=False, enable_graph_rewriter=False, gpu_mem_fraction=0.95, use_tpu=False, inter_op_parallelism_threads=0, intra_op_parallelism_threads=0): """The TensorFlow Session config to use.""" if use_tpu: graph_options = tf.GraphOptions() else: if enable_graph_rewriter: rewrite_options = rewriter_config_pb2.RewriterConfig() rewrite_options.layout_optimizer = rewriter_config_pb2.RewriterConfig.ON graph_options = tf.GraphOptions(rewrite_options=rewrite_options) else: graph_options = tf.GraphOptions( optimizer_options=tf.OptimizerOptions( opt_level=tf.OptimizerOptions.L1, do_function_inlining=False)) gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_mem_fraction) config = tf.ConfigProto( allow_soft_placement=True, graph_options=graph_options, gpu_options=gpu_options, log_device_placement=log_device_placement, inter_op_parallelism_threads=inter_op_parallelism_threads, intra_op_parallelism_threads=intra_op_parallelism_threads) return config
Example #2
Source File: tf_nizza.py From sgnmt with Apache License 2.0 | 6 votes |
def _session_config(self): """Creates the session config with t2t default parameters.""" graph_options = tf.GraphOptions(optimizer_options=tf.OptimizerOptions( opt_level=tf.OptimizerOptions.L1, do_function_inlining=False)) if self._single_cpu_thread: config = tf.ConfigProto( intra_op_parallelism_threads=1, inter_op_parallelism_threads=1, allow_soft_placement=True, graph_options=graph_options, log_device_placement=False) else: gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=0.95) config = tf.ConfigProto( allow_soft_placement=True, graph_options=graph_options, gpu_options=gpu_options, log_device_placement=False) return config
Example #3
Source File: function_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testTanhSymGrad(self): @function.Defun(tf.float32) def Forward(x): return tf.reduce_sum(tf.tanh(x)) g = tf.Graph() with g.as_default(): x = tf.placeholder(tf.float32) y = Forward(x) dx = tf.gradients([y], [x]) inp = np.array([-1, 1, 2, -2], dtype=np.float32) feed = {x: inp} cfg = tf.ConfigProto(graph_options=tf.GraphOptions( optimizer_options=tf.OptimizerOptions( opt_level=tf.OptimizerOptions.L1, do_function_inlining=True))) with tf.Session(graph=g, config=cfg) as sess: out, = sess.run(dx, feed) self.assertAllClose(1 - np.square(np.tanh(inp)), out)
Example #4
Source File: parameterized_truncated_normal_op_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def parameterized_vs_naive(shape, num_iters, use_gpu=False): np.random.seed(1618) # Make it reproducible. # No CSE/CF. optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L0) config = tf.ConfigProto( graph_options=tf.GraphOptions(optimizer_options=optimizer_options)) with tf.Session(config=config) as sess: with tf.device("/cpu:0" if not use_gpu else None): param_op = tf.group(random_ops.parameterized_truncated_normal(shape)) naive_op = tf.group(random_ops.truncated_normal(shape)) # Burn-in to avoid session setup costs in the timing. sess.run(param_op) sess.run(param_op) param_dt = timeit.timeit(lambda: sess.run(param_op), number=num_iters) sess.run(naive_op) sess.run(naive_op) naive_dt = timeit.timeit(lambda: sess.run(naive_op), number=num_iters) return param_dt, naive_dt
Example #5
Source File: multinomial_op_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def native_op_vs_composed_ops(batch_size, num_classes, num_samples, num_iters): np.random.seed(1618) # Make it reproducible. shape = [batch_size, num_classes] logits_np = np.random.randn(*shape).astype(np.float32) # No CSE/CF. optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L0) config = tf.ConfigProto( graph_options=tf.GraphOptions(optimizer_options=optimizer_options)) with tf.Session(config=config) as sess: logits = tf.constant(logits_np, shape=shape) native_op = tf.group(native_sampler(logits, num_samples)) composed_op = tf.group(composed_sampler(logits, num_samples)) native_dt = timeit.timeit(lambda: sess.run(native_op), number=num_iters) composed_dt = timeit.timeit(lambda: sess.run(composed_op), number=num_iters) return native_dt, composed_dt
Example #6
Source File: trainer.py From XMUNMT with BSD 3-Clause "New" or "Revised" License | 5 votes |
def session_config(params): optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L1, do_function_inlining=True) graph_options = tf.GraphOptions(optimizer_options=optimizer_options) config = tf.ConfigProto(allow_soft_placement=True, graph_options=graph_options) if params.device_list: device_str = ",".join([str(i) for i in params.device_list]) config.gpu_options.visible_device_list = device_str return config
Example #7
Source File: resnet_test.py From gradient-checkpointing with MIT License | 5 votes |
def create_session(): optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L0) config = tf.ConfigProto(operation_timeout_in_ms=150000, graph_options=tf.GraphOptions(optimizer_options=optimizer_options)) # config.graph_options.rewrite_options.constant_folding = rewriter_config_pb2.RewriterConfig.OFF config.graph_options.place_pruned_graph = True return tf.Session(config=config)
Example #8
Source File: resnet_correctness_test.py From gradient-checkpointing with MIT License | 5 votes |
def create_session(): optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L0) config = tf.ConfigProto(operation_timeout_in_ms=150000, graph_options=tf.GraphOptions(optimizer_options=optimizer_options)) config.graph_options.rewrite_options.constant_folding = rewriter_config_pb2.RewriterConfig.OFF config.graph_options.place_pruned_graph = True return tf.Session(config=config)
Example #9
Source File: multiple_memory_obtain_test.py From gradient-checkpointing with MIT License | 5 votes |
def create_session(): config = tf.ConfigProto(log_device_placement=False, graph_options=tf.GraphOptions(optimizer_options=tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L0))) return tf.InteractiveSession(config=config)
Example #10
Source File: deep_imagenet_benchmark.py From gradient-checkpointing with MIT License | 5 votes |
def create_session(): optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L0) config = tf.ConfigProto(operation_timeout_in_ms=150000, graph_options=tf.GraphOptions(optimizer_options=optimizer_options)) # config.graph_options.rewrite_options.constant_folding = rewriter_config_pb2.RewriterConfig.OFF config.graph_options.place_pruned_graph = True return tf.Session(config=config)
Example #11
Source File: deep_resnet_benchmark.py From gradient-checkpointing with MIT License | 5 votes |
def create_session(): optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L0) config = tf.ConfigProto(operation_timeout_in_ms=150000, graph_options=tf.GraphOptions(optimizer_options=optimizer_options)) # config.graph_options.rewrite_options.constant_folding = rewriter_config_pb2.RewriterConfig.OFF config.graph_options.place_pruned_graph = True return tf.Session(config=config)
Example #12
Source File: mnist_correctness_test.py From gradient-checkpointing with MIT License | 5 votes |
def create_session(): from tensorflow.core.protobuf import rewriter_config_pb2 optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L0) config = tf.ConfigProto(operation_timeout_in_ms=150000, graph_options=tf.GraphOptions(optimizer_options=optimizer_options)) config.graph_options.rewrite_options.constant_folding = rewriter_config_pb2.RewriterConfig.OFF config.graph_options.place_pruned_graph = True return tf.Session(config=config)
Example #13
Source File: linearize_test.py From gradient-checkpointing with MIT License | 5 votes |
def _create_session(): optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L0) config = tf.ConfigProto(operation_timeout_in_ms=3000, graph_options=tf.GraphOptions(optimizer_options=optimizer_options)) config.graph_options.rewrite_options.constant_folding = rewriter_config_pb2.RewriterConfig.OFF config.graph_options.place_pruned_graph = True return tf.Session(config=config)
Example #14
Source File: translator.py From XMUNMT with BSD 3-Clause "New" or "Revised" License | 5 votes |
def session_config(params): optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L1, do_function_inlining=False) graph_options = tf.GraphOptions(optimizer_options=optimizer_options) config = tf.ConfigProto(allow_soft_placement=True, graph_options=graph_options) if params.device_list: device_str = ",".join([str(i) for i in params.device_list]) config.gpu_options.visible_device_list = device_str return config
Example #15
Source File: trainer.py From Document-Transformer with BSD 3-Clause "New" or "Revised" License | 5 votes |
def session_config(params): optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L1, do_function_inlining=True) graph_options = tf.GraphOptions(optimizer_options=optimizer_options) config = tf.ConfigProto(allow_soft_placement=True, graph_options=graph_options) if params.device_list: device_str = ",".join([str(i) for i in params.device_list]) config.gpu_options.visible_device_list = device_str return config
Example #16
Source File: translator.py From Document-Transformer with BSD 3-Clause "New" or "Revised" License | 5 votes |
def session_config(params): optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L1, do_function_inlining=False) graph_options = tf.GraphOptions(optimizer_options=optimizer_options) config = tf.ConfigProto(allow_soft_placement=True, graph_options=graph_options) if params.device_list: device_str = ",".join([str(i) for i in params.device_list]) config.gpu_options.visible_device_list = device_str return config
Example #17
Source File: translator_ctx.py From Document-Transformer with BSD 3-Clause "New" or "Revised" License | 5 votes |
def session_config(params): optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L1, do_function_inlining=False) graph_options = tf.GraphOptions(optimizer_options=optimizer_options) config = tf.ConfigProto(allow_soft_placement=True, graph_options=graph_options) if params.device_list: device_str = ",".join([str(i) for i in params.device_list]) config.gpu_options.visible_device_list = device_str return config
Example #18
Source File: trainer_ctx.py From Document-Transformer with BSD 3-Clause "New" or "Revised" License | 5 votes |
def session_config(params): optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L1, do_function_inlining=True) graph_options = tf.GraphOptions(optimizer_options=optimizer_options) config = tf.ConfigProto(allow_soft_placement=True, graph_options=graph_options) if params.device_list: device_str = ",".join([str(i) for i in params.device_list]) config.gpu_options.visible_device_list = device_str return config
Example #19
Source File: scorer.py From Document-Transformer with BSD 3-Clause "New" or "Revised" License | 5 votes |
def session_config(params): optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L1, do_function_inlining=False) graph_options = tf.GraphOptions(optimizer_options=optimizer_options) config = tf.ConfigProto(allow_soft_placement=True, graph_options=graph_options) if params.device_list: device_str = ",".join([str(i) for i in params.device_list]) config.gpu_options.visible_device_list = device_str return config
Example #20
Source File: tf_utils.py From sgnmt with Apache License 2.0 | 5 votes |
def session_config(n_cpu_threads=-1): """Creates the session config with default parameters. Args: n_cpu_threads (int): Number of CPU threads. If negative, we assume either GPU decoding or that all CPU cores can be used. Returns: A TF session config object. """ graph_options = tf.GraphOptions(optimizer_options=tf.OptimizerOptions( opt_level=tf.OptimizerOptions.L1, do_function_inlining=False)) if n_cpu_threads < 0: gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=0.95) config = tf.ConfigProto( allow_soft_placement=True, graph_options=graph_options, gpu_options=gpu_options, log_device_placement=False) else: #device_count={'CPU': n_cpu_threads}, if n_cpu_threads >= 4: # This adjustment is an estimate of the effective load which # accounts for the sequential parts in SGNMT. if n_cpu_threads == 4: n_cpu_threads = 5 else: n_cpu_threads = int(n_cpu_threads*5/1.5 - 10) logging.debug("Setting TF inter and intra op parallelism " "to %d" % n_cpu_threads) config = tf.ConfigProto( intra_op_parallelism_threads=n_cpu_threads, inter_op_parallelism_threads=n_cpu_threads, allow_soft_placement=True, graph_options=graph_options, log_device_placement=False) return config
Example #21
Source File: trainer.py From transformer-aan with BSD 3-Clause "New" or "Revised" License | 5 votes |
def session_config(params): optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L1, do_function_inlining=True) graph_options = tf.GraphOptions(optimizer_options=optimizer_options) config = tf.ConfigProto(allow_soft_placement=True, graph_options=graph_options) if params.device_list: device_str = ",".join([str(i) for i in params.device_list]) config.gpu_options.visible_device_list = device_str return config
Example #22
Source File: translator.py From transformer-aan with BSD 3-Clause "New" or "Revised" License | 5 votes |
def session_config(params): optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L1, do_function_inlining=False) graph_options = tf.GraphOptions(optimizer_options=optimizer_options) config = tf.ConfigProto(allow_soft_placement=True, graph_options=graph_options) if params.device_list: device_str = ",".join([str(i) for i in params.device_list]) config.gpu_options.visible_device_list = device_str return config
Example #23
Source File: imagenet_test.py From gradient-checkpointing with MIT License | 5 votes |
def create_session(): global sess optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L0) config = tf.ConfigProto(operation_timeout_in_ms=150000, graph_options=tf.GraphOptions(optimizer_options=optimizer_options)) sess = tf.Session(config=config) return sess
Example #24
Source File: trainer_lib.py From BERT with Apache License 2.0 | 5 votes |
def create_session_config(log_device_placement=False, enable_graph_rewriter=False, gpu_mem_fraction=0.95, use_tpu=False, xla_jit_level=tf.OptimizerOptions.OFF, inter_op_parallelism_threads=0, intra_op_parallelism_threads=0): """The TensorFlow Session config to use.""" if use_tpu: graph_options = tf.GraphOptions() else: if enable_graph_rewriter: rewrite_options = rewriter_config_pb2.RewriterConfig() rewrite_options.layout_optimizer = rewriter_config_pb2.RewriterConfig.ON graph_options = tf.GraphOptions(rewrite_options=rewrite_options) else: graph_options = tf.GraphOptions( optimizer_options=tf.OptimizerOptions( opt_level=tf.OptimizerOptions.L1, do_function_inlining=False, global_jit_level=xla_jit_level)) gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_mem_fraction) config = tf.ConfigProto( allow_soft_placement=True, graph_options=graph_options, gpu_options=gpu_options, log_device_placement=log_device_placement, inter_op_parallelism_threads=inter_op_parallelism_threads, intra_op_parallelism_threads=intra_op_parallelism_threads, isolate_session_state=True) return config
Example #25
Source File: trainer.py From THUMT with BSD 3-Clause "New" or "Revised" License | 5 votes |
def session_config(params): optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L1, do_function_inlining=True) graph_options = tf.GraphOptions(optimizer_options=optimizer_options) config = tf.ConfigProto(allow_soft_placement=True, graph_options=graph_options) if distribute.is_distributed_training_mode(): config.gpu_options.visible_device_list = str(distribute.local_rank()) elif params.device_list: device_str = ",".join([str(i) for i in params.device_list]) config.gpu_options.visible_device_list = device_str return config
Example #26
Source File: get_relevance.py From THUMT with BSD 3-Clause "New" or "Revised" License | 5 votes |
def session_config(params): optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L1, do_function_inlining=False) graph_options = tf.GraphOptions(optimizer_options=optimizer_options) config = tf.ConfigProto(allow_soft_placement=True, graph_options=graph_options, intra_op_parallelism_threads=16, inter_op_parallelism_threads=16) if params.device_list: device_str = ",".join([str(i) for i in params.device_list]) config.gpu_options.visible_device_list = device_str return config
Example #27
Source File: translator.py From THUMT with BSD 3-Clause "New" or "Revised" License | 5 votes |
def session_config(params): optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L1, do_function_inlining=False) graph_options = tf.GraphOptions(optimizer_options=optimizer_options) config = tf.ConfigProto(allow_soft_placement=True, graph_options=graph_options) if params.device_list: device_str = ",".join([str(i) for i in params.device_list]) config.gpu_options.visible_device_list = device_str return config
Example #28
Source File: scorer.py From THUMT with BSD 3-Clause "New" or "Revised" License | 5 votes |
def session_config(params): optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L1, do_function_inlining=False) graph_options = tf.GraphOptions(optimizer_options=optimizer_options) config = tf.ConfigProto(allow_soft_placement=True, graph_options=graph_options) if params.device_list: device_str = ",".join([str(i) for i in params.device_list]) config.gpu_options.visible_device_list = device_str return config
Example #29
Source File: translate.py From UNMT-SPR with MIT License | 5 votes |
def session_config(params): optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L1, do_function_inlining=False) graph_options = tf.GraphOptions(optimizer_options=optimizer_options) config = tf.ConfigProto(allow_soft_placement=True, graph_options=graph_options) if params.device_list: device_str = ",".join([str(i) for i in params.device_list]) config.gpu_options.visible_device_list = device_str return config
Example #30
Source File: score.py From UNMT-SPR with MIT License | 5 votes |
def session_config(params): optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L1, do_function_inlining=False) graph_options = tf.GraphOptions(optimizer_options=optimizer_options) config = tf.ConfigProto(allow_soft_placement=True, graph_options=graph_options) if params.device_list: device_str = ",".join([str(i) for i in params.device_list]) config.gpu_options.visible_device_list = device_str return config