Python tensorflow.trainable_variables() Examples
The following are 30
code examples of tensorflow.trainable_variables().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: optimization_test.py From BERT-Classification-Tutorial with Apache License 2.0 | 6 votes |
def test_adam(self): with self.test_session() as sess: w = tf.get_variable( "w", shape=[3], initializer=tf.constant_initializer([0.1, -0.2, -0.1])) x = tf.constant([0.4, 0.2, -0.5]) loss = tf.reduce_mean(tf.square(x - w)) tvars = tf.trainable_variables() grads = tf.gradients(loss, tvars) global_step = tf.train.get_or_create_global_step() optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2) train_op = optimizer.apply_gradients(zip(grads, tvars), global_step) init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) sess.run(init_op) for _ in range(100): sess.run(train_op) w_np = sess.run(w) self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2)
Example #2
Source File: resnet_tf.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _decay(self): """L2 weight decay loss.""" if self.decay_cost is not None: return self.decay_cost costs = [] if self.device_name is None: for var in tf.trainable_variables(): if var.op.name.find(r'DW') > 0: costs.append(tf.nn.l2_loss(var)) else: for layer in self.layers: for var in layer.params_device[self.device_name].values(): if (isinstance(var, tf.Variable) and var.op.name.find(r'DW') > 0): costs.append(tf.nn.l2_loss(var)) self.decay_cost = tf.multiply(self.hps.weight_decay_rate, tf.add_n(costs)) return self.decay_cost
Example #3
Source File: train_image_classifier.py From STORK with MIT License | 6 votes |
def _get_variables_to_train(): """Returns a list of variables to train. Returns: A list of variables to train by the optimizer. """ if FLAGS.trainable_scopes is None: return tf.trainable_variables() else: scopes = [scope.strip() for scope in FLAGS.trainable_scopes.split(',')] variables_to_train = [] for scope in scopes: variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope) variables_to_train.extend(variables) return variables_to_train
Example #4
Source File: model_deploy_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testCreateSingleclone(self): g = tf.Graph() with g.as_default(): tf.set_random_seed(0) tf_inputs = tf.constant(self._inputs, dtype=tf.float32) tf_labels = tf.constant(self._labels, dtype=tf.float32) model_fn = BatchNormClassifier clone_args = (tf_inputs, tf_labels) deploy_config = model_deploy.DeploymentConfig(num_clones=1) self.assertEqual(slim.get_variables(), []) clones = model_deploy.create_clones(deploy_config, model_fn, clone_args) self.assertEqual(len(slim.get_variables()), 5) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) self.assertEqual(len(update_ops), 2) optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0) total_loss, grads_and_vars = model_deploy.optimize_clones(clones, optimizer) self.assertEqual(len(grads_and_vars), len(tf.trainable_variables())) self.assertEqual(total_loss.op.name, 'total_loss') for g, v in grads_and_vars: self.assertDeviceEqual(g.device, 'GPU:0') self.assertDeviceEqual(v.device, 'CPU:0')
Example #5
Source File: reinforce_w_baseline.py From reinforcement_learning with MIT License | 6 votes |
def _build_policy_net(self): """Build policy network""" with tf.variable_scope(self.scope): self.state_input = tf.placeholder(tf.float32, [None, self.state_size]) self.action = tf.placeholder(tf.int32, [None]) self.target = tf.placeholder(tf.float32, [None]) layer_1 = tf_utils.fc(self.state_input, self.n_hidden_1, tf.nn.relu) layer_2 = tf_utils.fc(layer_1, self.n_hidden_2, tf.nn.relu) self.value = tf_utils.fc(layer_2, 1) self.action_values = tf_utils.fc(layer_2, self.action_size) action_mask = tf.one_hot(self.action, self.action_size, 1.0, 0.0) self.action_value_pred = tf.reduce_sum(tf.nn.softmax(self.action_values) * action_mask, 1) self.action_probs = tf.nn.softmax(self.action_values) self.value_loss = tf.reduce_mean(tf.square(self.target - self.value)) self.pg_loss = tf.reduce_mean(-tf.log(self.action_value_pred) * (self.target - self.value)) self.l2_loss = tf.add_n([ tf.nn.l2_loss(v) for v in tf.trainable_variables() ]) self.loss = self.pg_loss + 5*self.value_loss + 0.002 * self.l2_loss self.optimizer = tf.train.AdamOptimizer(learning_rate=self.lr) self.train_op = self.optimizer.minimize(self.loss, global_step=tf.contrib.framework.get_global_step())
Example #6
Source File: reinforce.py From reinforcement_learning with MIT License | 6 votes |
def _build_policy_net(self): """Build policy network""" with tf.variable_scope(self.scope): self.state_input = tf.placeholder(tf.float32, [None, self.state_size]) self.action = tf.placeholder(tf.int32, [None]) self.target = tf.placeholder(tf.float32, [None]) layer_1 = tf_utils.fc(self.state_input, self.n_hidden_1, tf.nn.relu) layer_2 = tf_utils.fc(layer_1, self.n_hidden_2, tf.nn.relu) self.action_values = tf_utils.fc(layer_2, self.action_size) action_mask = tf.one_hot(self.action, self.action_size, 1.0, 0.0) self.action_prob = tf.nn.softmax(self.action_values) self.action_value_pred = tf.reduce_sum(self.action_prob * action_mask, 1) # l2 regularization self.l2_loss = tf.add_n([ tf.nn.l2_loss(v) for v in tf.trainable_variables() ]) self.pg_loss = tf.reduce_mean(-tf.log(self.action_value_pred) * self.target) self.loss = self.pg_loss + 0.002 * self.l2_loss self.optimizer = tf.train.AdamOptimizer(learning_rate=self.lr) self.train_op = self.optimizer.minimize(self.loss, global_step=tf.contrib.framework.get_global_step())
Example #7
Source File: model_deploy_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testCreateLogisticClassifier(self): g = tf.Graph() with g.as_default(): tf.set_random_seed(0) tf_inputs = tf.constant(self._inputs, dtype=tf.float32) tf_labels = tf.constant(self._labels, dtype=tf.float32) model_fn = LogisticClassifier clone_args = (tf_inputs, tf_labels) deploy_config = model_deploy.DeploymentConfig(num_clones=1) self.assertEqual(slim.get_variables(), []) clones = model_deploy.create_clones(deploy_config, model_fn, clone_args) self.assertEqual(len(slim.get_variables()), 2) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) self.assertEqual(update_ops, []) optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0) total_loss, grads_and_vars = model_deploy.optimize_clones(clones, optimizer) self.assertEqual(len(grads_and_vars), len(tf.trainable_variables())) self.assertEqual(total_loss.op.name, 'total_loss') for g, v in grads_and_vars: self.assertDeviceEqual(g.device, 'GPU:0') self.assertDeviceEqual(v.device, 'CPU:0')
Example #8
Source File: chptToBin.py From iAI with MIT License | 6 votes |
def chpt_to_dict_arrays_simple(file_name): """ Convert a checkpoint into into a dictionary of numpy arrays for later use in TensorRT NMT sample. """ config = tf.ConfigProto(allow_soft_placement=True) sess = tf.Session(config=config) saver = tf.train.import_meta_graph(file_name) dir_name = os.path.dirname(os.path.abspath(file_name)) saver.restore(sess, tf.train.latest_checkpoint(dir_name)) params = {} print ('\nFound the following trainable variables:') with sess.as_default(): variables = tf.trainable_variables() for v in variables: params[v.name] = v.eval(session=sess) print ("{0} {1}".format(v.name, params[v.name].shape)) #use default value params["forget_bias"] = 1.0 return params
Example #9
Source File: chptToBin.py From iAI with MIT License | 6 votes |
def chpt_to_dict_arrays_simple(file_name): """ Convert a checkpoint into into a dictionary of numpy arrays for later use in TensorRT NMT sample. """ config = tf.ConfigProto(allow_soft_placement=True) sess = tf.Session(config=config) saver = tf.train.import_meta_graph(file_name) dir_name = os.path.dirname(os.path.abspath(file_name)) saver.restore(sess, tf.train.latest_checkpoint(dir_name)) params = {} print ('\nFound the following trainable variables:') with sess.as_default(): variables = tf.trainable_variables() for v in variables: params[v.name] = v.eval(session=sess) print ("{0} {1}".format(v.name, params[v.name].shape)) #use default value params["forget_bias"] = 1.0 return params
Example #10
Source File: seq2seq_attention_model.py From DOTA_models with Apache License 2.0 | 6 votes |
def _add_train_op(self): """Sets self._train_op, op to run for training.""" hps = self._hps self._lr_rate = tf.maximum( hps.min_lr, # min_lr_rate. tf.train.exponential_decay(hps.lr, self.global_step, 30000, 0.98)) tvars = tf.trainable_variables() with tf.device(self._get_gpu(self._num_gpus-1)): grads, global_norm = tf.clip_by_global_norm( tf.gradients(self._loss, tvars), hps.max_grad_norm) tf.summary.scalar('global_norm', global_norm) optimizer = tf.train.GradientDescentOptimizer(self._lr_rate) tf.summary.scalar('learning rate', self._lr_rate) self._train_op = optimizer.apply_gradients( zip(grads, tvars), global_step=self.global_step, name='train_step')
Example #11
Source File: chptToBin.py From iAI with MIT License | 6 votes |
def chpt_to_dict_arrays_simple(file_name): """ Convert a checkpoint into into a dictionary of numpy arrays for later use in TensorRT NMT sample. """ config = tf.ConfigProto(allow_soft_placement=True) sess = tf.Session(config=config) saver = tf.train.import_meta_graph(file_name) dir_name = os.path.dirname(os.path.abspath(file_name)) saver.restore(sess, tf.train.latest_checkpoint(dir_name)) params = {} print ('\nFound the following trainable variables:') with sess.as_default(): variables = tf.trainable_variables() for v in variables: params[v.name] = v.eval(session=sess) print ("{0} {1}".format(v.name, params[v.name].shape)) #use default value params["forget_bias"] = 1.0 return params
Example #12
Source File: resnet_model.py From DOTA_models with Apache License 2.0 | 6 votes |
def _build_train_op(self): """Build training specific ops for the graph.""" self.lrn_rate = tf.constant(self.hps.lrn_rate, tf.float32) tf.summary.scalar('learning_rate', self.lrn_rate) trainable_variables = tf.trainable_variables() grads = tf.gradients(self.cost, trainable_variables) if self.hps.optimizer == 'sgd': optimizer = tf.train.GradientDescentOptimizer(self.lrn_rate) elif self.hps.optimizer == 'mom': optimizer = tf.train.MomentumOptimizer(self.lrn_rate, 0.9) apply_op = optimizer.apply_gradients( zip(grads, trainable_variables), global_step=self.global_step, name='train_step') train_ops = [apply_op] + self._extra_train_ops self.train_op = tf.group(*train_ops) # TODO(xpan): Consider batch_norm in contrib/layers/python/layers/layers.py
Example #13
Source File: neural_gpu_trainer.py From DOTA_models with Apache License 2.0 | 6 votes |
def print_vectors(embedding_key, vocab_path, word_vector_file): """Print vectors from the given variable.""" _, rev_vocab = wmt.initialize_vocabulary(vocab_path) vectors_variable = [v for v in tf.trainable_variables() if embedding_key == v.name] if len(vectors_variable) != 1: data.print_out("Word vector variable not found or too many.") sys.exit(1) vectors_variable = vectors_variable[0] vectors = vectors_variable.eval() l, s = vectors.shape[0], vectors.shape[1] data.print_out("Printing %d word vectors from %s to %s." % (l, embedding_key, word_vector_file)) with tf.gfile.GFile(word_vector_file, mode="w") as f: # Lines have format: dog 0.045123 -0.61323 0.413667 ... for i in xrange(l): f.write(rev_vocab[i]) for j in xrange(s): f.write(" %.8f" % vectors[i][j]) f.write("\n")
Example #14
Source File: value_functions.py From HardRLWithYoutube with MIT License | 6 votes |
def __init__(self, ob_dim, ac_dim): #pylint: disable=W0613 X = tf.placeholder(tf.float32, shape=[None, ob_dim*2+ac_dim*2+2]) # batch of observations vtarg_n = tf.placeholder(tf.float32, shape=[None], name='vtarg') wd_dict = {} h1 = tf.nn.elu(dense(X, 64, "h1", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict)) h2 = tf.nn.elu(dense(h1, 64, "h2", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict)) vpred_n = dense(h2, 1, "hfinal", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict)[:,0] sample_vpred_n = vpred_n + tf.random_normal(tf.shape(vpred_n)) wd_loss = tf.get_collection("vf_losses", None) loss = tf.reduce_mean(tf.square(vpred_n - vtarg_n)) + tf.add_n(wd_loss) loss_sampled = tf.reduce_mean(tf.square(vpred_n - tf.stop_gradient(sample_vpred_n))) self._predict = U.function([X], vpred_n) optim = kfac.KfacOptimizer(learning_rate=0.001, cold_lr=0.001*(1-0.9), momentum=0.9, \ clip_kl=0.3, epsilon=0.1, stats_decay=0.95, \ async=1, kfac_update=2, cold_iter=50, \ weight_decay_dict=wd_dict, max_grad_norm=None) vf_var_list = [] for var in tf.trainable_variables(): if "vf" in var.name: vf_var_list.append(var) update_op, self.q_runner = optim.minimize(loss, loss_sampled, var_list=vf_var_list) self.do_update = U.function([X, vtarg_n], update_op) #pylint: disable=E1101 U.initialize() # Initialize uninitialized TF variables
Example #15
Source File: optimize.py From fine-lm with MIT License | 6 votes |
def weight_decay_and_noise(loss, hparams, learning_rate, var_list=None): """Apply weight decay and weight noise.""" if var_list is None: var_list = tf.trainable_variables() decay_vars = [v for v in var_list] noise_vars = [v for v in var_list if "/body/" in v.name] weight_decay_loss = weight_decay(hparams.weight_decay, decay_vars) if hparams.weight_decay: tf.summary.scalar("losses/weight_decay", weight_decay_loss) weight_noise_ops = weight_noise(hparams.weight_noise, learning_rate, noise_vars) with tf.control_dependencies(weight_noise_ops): loss = tf.identity(loss) loss += weight_decay_loss return loss
Example #16
Source File: value_functions.py From lirpg with MIT License | 6 votes |
def __init__(self, ob_dim, ac_dim): #pylint: disable=W0613 X = tf.placeholder(tf.float32, shape=[None, ob_dim*2+ac_dim*2+2]) # batch of observations vtarg_n = tf.placeholder(tf.float32, shape=[None], name='vtarg') wd_dict = {} h1 = tf.nn.elu(dense(X, 64, "h1", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict)) h2 = tf.nn.elu(dense(h1, 64, "h2", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict)) vpred_n = dense(h2, 1, "hfinal", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict)[:,0] sample_vpred_n = vpred_n + tf.random_normal(tf.shape(vpred_n)) wd_loss = tf.get_collection("vf_losses", None) loss = tf.reduce_mean(tf.square(vpred_n - vtarg_n)) + tf.add_n(wd_loss) loss_sampled = tf.reduce_mean(tf.square(vpred_n - tf.stop_gradient(sample_vpred_n))) self._predict = U.function([X], vpred_n) optim = kfac.KfacOptimizer(learning_rate=0.001, cold_lr=0.001*(1-0.9), momentum=0.9, \ clip_kl=0.3, epsilon=0.1, stats_decay=0.95, \ async=1, kfac_update=2, cold_iter=50, \ weight_decay_dict=wd_dict, max_grad_norm=None) vf_var_list = [] for var in tf.trainable_variables(): if "vf" in var.name: vf_var_list.append(var) update_op, self.q_runner = optim.minimize(loss, loss_sampled, var_list=vf_var_list) self.do_update = U.function([X, vtarg_n], update_op) #pylint: disable=E1101 U.initialize() # Initialize uninitialized TF variables
Example #17
Source File: dqn.py From TransferRL with MIT License | 6 votes |
def _add_train_op(self): # In regression, the objective loss is Mean Squared Error (MSE). self.loss = tf.losses.mean_squared_error(labels = self._y, predictions = self.output) tvars = tf.trainable_variables() gradients = tf.gradients(self.loss, tvars, aggregation_method=tf.AggregationMethod.EXPERIMENTAL_TREE) # Clip the gradients with tf.device("/gpu:{}".format(self._hps.dqn_gpu_num)): grads, global_norm = tf.clip_by_global_norm(gradients, self._hps.max_grad_norm) # Add a summary tf.summary.scalar('global_norm', global_norm) # Apply adagrad optimizer optimizer = tf.train.AdamOptimizer(self._hps.lr) with tf.device("/gpu:{}".format(self._hps.dqn_gpu_num)): self.train_op = optimizer.apply_gradients(zip(grads, tvars), global_step=self.global_step, name='train_step') self.variable_summaries('dqn_loss',self.loss)
Example #18
Source File: dqn.py From TransferRL with MIT License | 5 votes |
def _add_update_weights_op(self): """ Updates the weight of the target network based on the current network. """ self.model_trainables = tf.trainable_variables(scope='{}_relay_network'.format(self._name_variable)) # target variables self._new_trainables = [tf.placeholder(tf.float32, None,name='trainables_{}'.format(i)) for i in range(len(self.model_trainables))] self.assign_ops = [] if self._hps.dqn_polyak_averaging: # target parameters are slowly updating using: \phi_target = \tau * \phi_target + (1-\tau) * \phi_target tau = (tf.cast(self._train_step,tf.float32) % self._hps.dqn_target_update)/float(self._hps.dqn_target_update) for i, mt in enumerate(self.model_trainables): nt = self._new_trainables[i] self.assign_ops.append(mt.assign(tau * mt + (1-tau) * nt)) else: if self._train_step % self._hps.dqn_target_update == 0: for i, mt in enumerate(self.model_trainables): nt = self._new_trainables[i] self.assign_ops.append(mt.assign(nt))
Example #19
Source File: model.py From PathCon with MIT License | 5 votes |
def _build_train(self): self.base_loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=self.labels, logits=self.scores)) self.l2_loss = self.l2 * sum(tf.nn.l2_loss(var) for var in tf.trainable_variables() if 'bias' not in var.name) self.loss = self.base_loss + self.l2_loss self.optimizer = tf.train.AdamOptimizer(self.lr).minimize(self.loss)
Example #20
Source File: probclass.py From imgcomp-cvpr with GNU General Public License v3.0 | 5 votes |
def variables(self): trainable_vars = tf.trainable_variables(self._PROBCLASS_SCOPE) assert len(trainable_vars) > 0, 'No trainable variables found in scope {}. All: {}'.format( self._PROBCLASS_SCOPE, tf.trainable_variables()) return trainable_vars
Example #21
Source File: autoencoder.py From imgcomp-cvpr with GNU General Public License v3.0 | 5 votes |
def _get_trainable_vars_assert_non_empty(scope): trainable_vars = tf.trainable_variables(scope) assert len(trainable_vars) > 0, 'No trainable variables found in scope {}. All: {}'.format( scope, tf.trainable_variables()) return trainable_vars
Example #22
Source File: kfac.py From HardRLWithYoutube with MIT License | 5 votes |
def compute_gradients(self, loss, var_list=None): varlist = var_list if varlist is None: varlist = tf.trainable_variables() g = tf.gradients(loss, varlist) return [(a, b) for a, b in zip(g, varlist)]
Example #23
Source File: kfac.py From HardRLWithYoutube with MIT License | 5 votes |
def compute_and_apply_stats(self, loss_sampled, var_list=None): varlist = var_list if varlist is None: varlist = tf.trainable_variables() stats = self.compute_stats(loss_sampled, var_list=varlist) return self.apply_stats(stats)
Example #24
Source File: ner_model_bilstm_crf.py From deepnlp with MIT License | 5 votes |
def __init__(self, is_training, config): self.batch_size = batch_size = config.batch_size self.num_steps = num_steps = config.num_steps self.is_training = is_training self.crf_layer = config.crf_layer # if the model has the final CRF decoding layer size = config.hidden_size vocab_size = config.vocab_size # Define input and target tensors self._input_data = tf.placeholder(tf.int32, [batch_size, num_steps]) self._targets = tf.placeholder(tf.int32, [batch_size, num_steps]) with tf.device("/cpu:0"): embedding = tf.get_variable("embedding", [vocab_size, size], dtype=data_type()) inputs = tf.nn.embedding_lookup(embedding, self._input_data) # BiLSTM CRF model self._cost, self._logits, self._transition_params = _bilstm_crf_model(inputs, self._targets, config) # Gradients and SGD update operation for training the model. self._lr = tf.Variable(0.0, trainable=False) tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(self._cost, tvars), config.max_grad_norm) optimizer = tf.train.GradientDescentOptimizer(self._lr) self._train_op = optimizer.apply_gradients( zip(grads, tvars), global_step=tf.contrib.framework.get_or_create_global_step()) self._new_lr = tf.placeholder(data_type(), shape=[], name="new_learning_rate") self._lr_update = tf.assign(self._lr, self._new_lr) self.saver = tf.train.Saver(tf.global_variables())
Example #25
Source File: utils.py From HardRLWithYoutube with MIT License | 5 votes |
def find_trainable_variables(key): return tf.trainable_variables(key)
Example #26
Source File: build_graph.py From HardRLWithYoutube with MIT License | 5 votes |
def default_param_noise_filter(var): if var not in tf.trainable_variables(): # We never perturb non-trainable vars. return False if "fully_connected" in var.name: # We perturb fully-connected layers. return True # The remaining layers are likely conv or layer norm layers, which we do not wish to # perturb (in the former case because they only extract features, in the latter case because # we use them for normalization purposes). If you change your network, you will likely want # to re-consider which layers to perturb and which to keep untouched. return False
Example #27
Source File: ner_model_bilstm.py From deepnlp with MIT License | 5 votes |
def __init__(self, is_training, config): self.batch_size = batch_size = config.batch_size self.num_steps = num_steps = config.num_steps self.is_training = is_training size = config.hidden_size vocab_size = config.vocab_size # Define input and target tensors self._input_data = tf.placeholder(tf.int32, [batch_size, num_steps]) self._targets = tf.placeholder(tf.int32, [batch_size, num_steps]) with tf.device("/cpu:0"): embedding = tf.get_variable("embedding", [vocab_size, size], dtype=data_type()) inputs = tf.nn.embedding_lookup(embedding, self._input_data) if (config.bi_direction): # BiLSTM self._cost, self._logits = _bilstm_model(inputs, self._targets, config) else: # LSTM self._cost, self._logits, self._final_state, self._initial_state = _lstm_model(inputs, self._targets, config) # Gradients and SGD update operation for training the model. self._lr = tf.Variable(0.0, trainable=False) tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(self._cost, tvars), config.max_grad_norm) optimizer = tf.train.GradientDescentOptimizer(self._lr) self._train_op = optimizer.apply_gradients( zip(grads, tvars), global_step=tf.contrib.framework.get_or_create_global_step()) self._new_lr = tf.placeholder(data_type(), shape=[], name="new_learning_rate") self._lr_update = tf.assign(self._lr, self._new_lr) self.saver = tf.train.Saver(tf.global_variables())
Example #28
Source File: kfac.py From lirpg with MIT License | 5 votes |
def compute_and_apply_stats(self, loss_sampled, var_list=None): varlist = var_list if varlist is None: varlist = tf.trainable_variables() stats = self.compute_stats(loss_sampled, var_list=varlist) return self.apply_stats(stats)
Example #29
Source File: utils.py From lirpg with MIT License | 5 votes |
def find_trainable_variables(key): with tf.variable_scope(key): return tf.trainable_variables()
Example #30
Source File: model.py From mac-network with Apache License 2.0 | 5 votes |
def computeGradients(self, optimizer, loss, trainableVars = None): # tf.trainable_variables() with tf.variable_scope("computeGradients"): if config.trainSubset: trainableVars = [] allVars = tf.trainable_variables() for var in allVars: if any((s in var.name) for s in config.varSubset): trainableVars.append(var) gradients_vars = optimizer.compute_gradients(loss, trainableVars) return gradients_vars