Python tensorflow.__version__() Examples
The following are 30
code examples of tensorflow.__version__().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: conftest.py From larq with Apache License 2.0 | 7 votes |
def keras_should_run_eagerly(request): """Fixture to run in graph and two eager modes. The modes are: - Graph mode - TensorFlow eager and Keras eager - TensorFlow eager and Keras not eager The `tf.context` sets graph/eager mode for TensorFlow. The yield is True if Keras should run eagerly. """ if request.param == "graph": if version.parse(tf.__version__) >= version.parse("2"): pytest.skip("Skipping graph mode for TensorFlow 2+.") with context.graph_mode(): yield else: with context.eager_mode(): yield request.param == "tf_keras_eager"
Example #2
Source File: export_api.py From BERT with Apache License 2.0 | 6 votes |
def main(_): print(FLAGS) print(tf.__version__, "==tensorflow version==") init_checkpoint = os.path.join(FLAGS.buckets, FLAGS.init_checkpoint) checkpoint_dir = os.path.join(FLAGS.buckets, FLAGS.model_output) export_dir = os.path.join(FLAGS.buckets, FLAGS.export_dir, "sample_sequence") print(init_checkpoint, checkpoint_dir, export_dir) export.export_model(FLAGS, init_checkpoint, checkpoint_dir, export_dir, input_target=FLAGS.input_target, predict_type='sample_sequence')
Example #3
Source File: tfdeploy.py From tfdeploy with MIT License | 6 votes |
def setup(tf, order=None): """ Sets up global variables (currently only the tensorflow version) to adapt to peculiarities of different tensorflow versions. This function should only be called before :py:class:`Model` creation, not for evaluation. Therefore, the tensorflow module *tf* must be passed: .. code-block:: python import tensorflow as tf import tfdeploy as td td.setup(tf) # ... Also, when *order* is not *None*, it is forwarded to :py:func:`optimize` for convenience. """ global _tf_version_string, _tf_version _tf_version_string = tf.__version__ _tf_version = _parse_tf_version(_tf_version_string) if order is not None: optimize(order)
Example #4
Source File: utils.py From keras-adamw with MIT License | 6 votes |
def reset_seeds(reset_graph_with_backend=None, verbose=1): if reset_graph_with_backend is not None: K = reset_graph_with_backend K.clear_session() tf.compat.v1.reset_default_graph() if verbose: print("KERAS AND TENSORFLOW GRAPHS RESET") np.random.seed(1) random.seed(2) if tf.__version__[0] == '2': tf.random.set_seed(3) else: tf.set_random_seed(3) if verbose: print("RANDOM SEEDS RESET")
Example #5
Source File: export_api.py From BERT with Apache License 2.0 | 6 votes |
def main(_): print(FLAGS) print(tf.__version__, "==tensorflow version==") init_checkpoint = os.path.join(FLAGS.buckets, FLAGS.init_checkpoint) checkpoint_dir = os.path.join(FLAGS.buckets, FLAGS.model_output) export_dir = os.path.join(FLAGS.buckets, FLAGS.export_dir) print(init_checkpoint, checkpoint_dir, export_dir) export.export_model(FLAGS, init_checkpoint, checkpoint_dir, export_dir, input_target=FLAGS.input_target)
Example #6
Source File: export_api.py From BERT with Apache License 2.0 | 6 votes |
def main(_): print(FLAGS) print(tf.__version__, "==tensorflow version==") init_checkpoint = os.path.join(FLAGS.buckets, FLAGS.init_checkpoint) checkpoint_dir = os.path.join(FLAGS.buckets, FLAGS.model_output) export_dir = os.path.join(FLAGS.buckets, FLAGS.export_dir) print(init_checkpoint, checkpoint_dir, export_dir) export_model.export_model(FLAGS, init_checkpoint, checkpoint_dir, export_dir, input_target=FLAGS.input_target)
Example #7
Source File: Model.py From Handwritten-Line-Text-Recognition-using-Deep-Learning-with-Tensorflow with Apache License 2.0 | 6 votes |
def setupTF(self): """ Initialize TensorFlow """ print('Python: ' + sys.version) print('Tensorflow: ' + tf.__version__) sess = tf.Session() # Tensorflow session saver = tf.train.Saver(max_to_keep=3) # Saver saves model to file modelDir = '../model/' latestSnapshot = tf.train.latest_checkpoint(modelDir) # Is there a saved model? # If model must be restored (for inference), there must be a snapshot if self.mustRestore and not latestSnapshot: raise Exception('No saved model found in: ' + modelDir) # Load saved model if available if latestSnapshot: print('Init with stored values from ' + latestSnapshot) saver.restore(sess, latestSnapshot) else: print('Init with new values') sess.run(tf.global_variables_initializer()) return (sess, saver)
Example #8
Source File: ptb_word_lm.py From yolo_v2 with Apache License 2.0 | 6 votes |
def get_config(): """Get model config.""" config = None if FLAGS.model == "small": config = SmallConfig() elif FLAGS.model == "medium": config = MediumConfig() elif FLAGS.model == "large": config = LargeConfig() elif FLAGS.model == "test": config = TestConfig() else: raise ValueError("Invalid model: %s", FLAGS.model) if FLAGS.rnn_mode: config.rnn_mode = FLAGS.rnn_mode if FLAGS.num_gpus != 1 or tf.__version__ < "1.3.0" : config.rnn_mode = BASIC return config
Example #9
Source File: cnn_util.py From models with Apache License 2.0 | 5 votes |
def tensorflow_version_tuple(): v = tf.__version__ major, minor, patch = v.split('.') return (int(major), int(minor), patch)
Example #10
Source File: eval.py From youtube-8m with Apache License 2.0 | 5 votes |
def main(unused_argv): logging.set_verbosity(tf.logging.INFO) print("tensorflow version: %s" % tf.__version__) evaluate()
Example #11
Source File: misc_utils.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def check_tensorflow_version(): # LINT.IfChange min_tf_version = "1.3.0" # LINT if (version.LooseVersion(tf.__version__) < version.LooseVersion(min_tf_version)): raise EnvironmentError("Tensorflow version must >= %s" % min_tf_version)
Example #12
Source File: facenet.py From tindetheus with MIT License | 5 votes |
def store_revision_info(src_path, output_dir, arg_string): try: # Get git hash cmd = ['git', 'rev-parse', 'HEAD'] gitproc = Popen(cmd, stdout = PIPE, cwd=src_path) (stdout, _) = gitproc.communicate() git_hash = stdout.strip() except OSError as e: git_hash = ' '.join(cmd) + ': ' + e.strerror try: # Get local changes cmd = ['git', 'diff', 'HEAD'] gitproc = Popen(cmd, stdout = PIPE, cwd=src_path) (stdout, _) = gitproc.communicate() git_diff = stdout.strip() except OSError as e: git_diff = ' '.join(cmd) + ': ' + e.strerror # Store a text file in the log directory rev_info_filename = os.path.join(output_dir, 'revision_info.txt') with open(rev_info_filename, "w") as text_file: text_file.write('arguments: %s\n--------------------\n' % arg_string) text_file.write('tensorflow version: %s\n--------------------\n' % tf.__version__) # @UndefinedVariable text_file.write('git hash: %s\n--------------------\n' % git_hash) text_file.write('%s' % git_diff)
Example #13
Source File: setup.py From training_results_v0.6 with Apache License 2.0 | 5 votes |
def check_tf_version(): try: import tensorflow as tf if tf.__version__ < '1.1.0': raise DistutilsPlatformError( 'Your TensorFlow version %s is outdated. ' 'Horovod requires tensorflow>=1.1.0' % tf.__version__) except ImportError: raise DistutilsPlatformError( 'import tensorflow failed, is it installed?\n\n%s' % traceback.format_exc()) except AttributeError: # This means that tf.__version__ was not exposed, which makes it *REALLY* old. raise DistutilsPlatformError( 'Your TensorFlow version is outdated. Horovod requires tensorflow>=1.1.0')
Example #14
Source File: util.py From tensorflow-litterbox with Apache License 2.0 | 5 votes |
def check_tensorflow_version(min_version=12): assert int(str.split(tf.__version__,'.')[1]) >= min_version, \ 'Installed Tensorflow version (%s) is not be >= 0.%s.0' % (tf.__version__, min_version)
Example #15
Source File: misc_utils.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def check_tensorflow_version(): # LINT.IfChange min_tf_version = "1.3.0" # LINT if (version.LooseVersion(tf.__version__) < version.LooseVersion(min_tf_version)): raise EnvironmentError("Tensorflow version must >= %s" % min_tf_version)
Example #16
Source File: cnn_util.py From models with Apache License 2.0 | 5 votes |
def tensorflow_version_tuple(): v = tf.__version__ major, minor, patch = v.split('.') return (int(major), int(minor), patch)
Example #17
Source File: cnn_util.py From models with Apache License 2.0 | 5 votes |
def tensorflow_version_tuple(): v = tf.__version__ major, minor, patch = v.split('.') return (int(major), int(minor), patch)
Example #18
Source File: misc_utils.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def check_tensorflow_version(): # LINT.IfChange min_tf_version = "1.3.0" # LINT if (version.LooseVersion(tf.__version__) < version.LooseVersion(min_tf_version)): raise EnvironmentError("Tensorflow version must >= %s" % min_tf_version)
Example #19
Source File: cnn_util.py From models with Apache License 2.0 | 5 votes |
def tensorflow_version_tuple(): v = tf.__version__ major, minor, patch = v.split('.') return (int(major), int(minor), patch)
Example #20
Source File: cnn_util.py From models with Apache License 2.0 | 5 votes |
def tensorflow_version_tuple(): v = tf.__version__ major, minor, patch = v.split('.') return (int(major), int(minor), patch)
Example #21
Source File: train.py From youtube-8m with Apache License 2.0 | 5 votes |
def main(unused_argv): # Load the environment. env = json.loads(os.environ.get("TF_CONFIG", "{}")) # Load the cluster data from the environment. cluster_data = env.get("cluster", None) cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None # Load the task data from the environment. task_data = env.get("task", None) or {"type": "master", "index": 0} task = type("TaskSpec", (object,), task_data) # Logging the version. logging.set_verbosity(tf.logging.INFO) logging.info("%s: Tensorflow version: %s.", task_as_string(task), tf.__version__) # Dispatch to a master, a worker, or a parameter server. if not cluster or task.type == "master" or task.type == "worker": Trainer(cluster, task, FLAGS.train_dir, FLAGS.log_device_placement).run( start_new_model=FLAGS.start_new_model) elif task.type == "ps": ParameterServer(cluster, task).run() else: raise ValueError("%s: Invalid task_type: %s." % (task_as_string(task), task.type))
Example #22
Source File: misc_utils.py From models with Apache License 2.0 | 5 votes |
def check_tensorflow_version(): min_tf_version = "1.4.0-dev20171024" if (version.LooseVersion(tf.__version__) < version.LooseVersion(min_tf_version)): raise EnvironmentError("Tensorflow version must >= %s" % min_tf_version)
Example #23
Source File: train-with-rebuild.py From youtube-8m with Apache License 2.0 | 5 votes |
def main(unused_argv): # Load the environment. env = json.loads(os.environ.get("TF_CONFIG", "{}")) # Load the cluster data from the environment. cluster_data = env.get("cluster", None) cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None # Load the task data from the environment. task_data = env.get("task", None) or {"type": "master", "index": 0} task = type("TaskSpec", (object,), task_data) # Logging the version. logging.set_verbosity(tf.logging.INFO) logging.info("%s: Tensorflow version: %s.", task_as_string(task), tf.__version__) # Dispatch to a master, a worker, or a parameter server. if not cluster or task.type == "master" or task.type == "worker": Trainer(cluster, task, FLAGS.train_dir, FLAGS.log_device_placement).run( start_new_model=FLAGS.start_new_model) elif task.type == "ps": ParameterServer(cluster, task).run() else: raise ValueError("%s: Invalid task_type: %s." % (task_as_string(task), task.type))
Example #24
Source File: train.py From youtube-8m with Apache License 2.0 | 5 votes |
def main(unused_argv): # Load the environment. env = json.loads(os.environ.get("TF_CONFIG", "{}")) # Load the cluster data from the environment. cluster_data = env.get("cluster", None) cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None # Load the task data from the environment. task_data = env.get("task", None) or {"type": "master", "index": 0} task = type("TaskSpec", (object,), task_data) # Logging the version. logging.set_verbosity(tf.logging.INFO) logging.info("%s: Tensorflow version: %s.", task_as_string(task), tf.__version__) # Dispatch to a master, a worker, or a parameter server. if not cluster or task.type == "master" or task.type == "worker": Trainer(cluster, task, FLAGS.train_dir, FLAGS.log_device_placement).run( start_new_model=FLAGS.start_new_model) elif task.type == "ps": ParameterServer(cluster, task).run() else: raise ValueError("%s: Invalid task_type: %s." % (task_as_string(task), task.type))
Example #25
Source File: train_autoencoder.py From youtube-8m with Apache License 2.0 | 5 votes |
def main(unused_argv): # Load the environment. env = json.loads(os.environ.get("TF_CONFIG", "{}")) # Load the cluster data from the environment. cluster_data = env.get("cluster", None) cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None # Load the task data from the environment. task_data = env.get("task", None) or {"type": "master", "index": 0} task = type("TaskSpec", (object,), task_data) # Logging the version. logging.set_verbosity(tf.logging.INFO) logging.info("%s: Tensorflow version: %s.", task_as_string(task), tf.__version__) # Dispatch to a master, a worker, or a parameter server. if not cluster or task.type == "master" or task.type == "worker": Trainer(cluster, task, FLAGS.train_dir, FLAGS.log_device_placement).run( start_new_model=FLAGS.start_new_model) elif task.type == "ps": ParameterServer(cluster, task).run() else: raise ValueError("%s: Invalid task_type: %s." % (task_as_string(task), task.type))
Example #26
Source File: train_embedding.py From youtube-8m with Apache License 2.0 | 5 votes |
def main(unused_argv): # Load the environment. env = json.loads(os.environ.get("TF_CONFIG", "{}")) # Load the cluster data from the environment. cluster_data = env.get("cluster", None) cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None # Load the task data from the environment. task_data = env.get("task", None) or {"type": "master", "index": 0} task = type("TaskSpec", (object,), task_data) # Logging the version. logging.set_verbosity(tf.logging.INFO) logging.info("%s: Tensorflow version: %s.", task_as_string(task), tf.__version__) # Dispatch to a master, a worker, or a parameter server. if not cluster or task.type == "master" or task.type == "worker": Trainer(cluster, task, FLAGS.train_dir, FLAGS.log_device_placement).run( start_new_model=FLAGS.start_new_model) elif task.type == "ps": ParameterServer(cluster, task).run() else: raise ValueError("%s: Invalid task_type: %s." % (task_as_string(task), task.type))
Example #27
Source File: eval.py From youtube-8m with Apache License 2.0 | 5 votes |
def main(unused_argv): logging.set_verbosity(tf.logging.INFO) print("tensorflow version: %s" % tf.__version__) evaluate()
Example #28
Source File: eval_autoencoder.py From youtube-8m with Apache License 2.0 | 5 votes |
def main(unused_argv): logging.set_verbosity(tf.logging.INFO) print("tensorflow version: %s" % tf.__version__) evaluate()
Example #29
Source File: train-with-rebuild.py From youtube-8m with Apache License 2.0 | 5 votes |
def main(unused_argv): # Load the environment. env = json.loads(os.environ.get("TF_CONFIG", "{}")) # Load the cluster data from the environment. cluster_data = env.get("cluster", None) cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None # Load the task data from the environment. task_data = env.get("task", None) or {"type": "master", "index": 0} task = type("TaskSpec", (object,), task_data) # Logging the version. logging.set_verbosity(tf.logging.INFO) logging.info("%s: Tensorflow version: %s.", task_as_string(task), tf.__version__) # Dispatch to a master, a worker, or a parameter server. if not cluster or task.type == "master" or task.type == "worker": Trainer(cluster, task, FLAGS.train_dir, FLAGS.log_device_placement).run( start_new_model=FLAGS.start_new_model) elif task.type == "ps": ParameterServer(cluster, task).run() else: raise ValueError("%s: Invalid task_type: %s." % (task_as_string(task), task.type))
Example #30
Source File: train_ensemble.py From youtube-8m with Apache License 2.0 | 5 votes |
def main(unused_argv): # Load the environment. env = json.loads(os.environ.get("TF_CONFIG", "{}")) # Load the cluster data from the environment. cluster_data = env.get("cluster", None) cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None # Load the task data from the environment. task_data = env.get("task", None) or {"type": "master", "index": 0} task = type("TaskSpec", (object,), task_data) # Logging the version. logging.set_verbosity(tf.logging.INFO) logging.info("%s: Tensorflow version: %s.", task_as_string(task), tf.__version__) # Dispatch to a master, a worker, or a parameter server. if not cluster or task.type == "master" or task.type == "worker": Trainer(cluster, task, FLAGS.train_dir, FLAGS.log_device_placement).run( start_new_model=FLAGS.start_new_model) elif task.type == "ps": ParameterServer(cluster, task).run() else: raise ValueError("%s: Invalid task_type: %s." % (task_as_string(task), task.type))