Python tensorflow.get_collection() Examples
The following are 30
code examples of tensorflow.get_collection().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: variables.py From DOTA_models with Apache License 2.0 | 6 votes |
def get_unique_variable(name): """Gets the variable uniquely identified by that name. Args: name: a name that uniquely identifies the variable. Returns: a tensorflow variable. Raises: ValueError: if no variable uniquely identified by the name exists. """ candidates = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, name) if not candidates: raise ValueError('Couldnt find variable %s' % name) for candidate in candidates: if candidate.op.name == name: return candidate raise ValueError('Variable %s does not uniquely identify a variable', name)
Example #2
Source File: build_graph.py From HardRLWithYoutube with MIT License | 6 votes |
def scope_vars(scope, trainable_only=False): """ Get variables inside a scope The scope can be specified as a string Parameters ---------- scope: str or VariableScope scope in which the variables reside. trainable_only: bool whether or not to return only the variables that were marked as trainable. Returns ------- vars: [tf.Variable] list of variables in `scope`. """ return tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES if trainable_only else tf.GraphKeys.GLOBAL_VARIABLES, scope=scope if isinstance(scope, str) else scope.name )
Example #3
Source File: model.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 6 votes |
def get_params(self): """ Provides access to the model's parameters. :return: A list of all Variables defining the model parameters. """ # Catch eager execution and assert function overload. try: if tf.executing_eagerly(): raise NotImplementedError("For Eager execution - get_params " "must be overridden.") except AttributeError: pass # For Graoh based execution scope_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.scope) return scope_vars
Example #4
Source File: model_deploy_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testCreateSingleclone(self): g = tf.Graph() with g.as_default(): tf.set_random_seed(0) tf_inputs = tf.constant(self._inputs, dtype=tf.float32) tf_labels = tf.constant(self._labels, dtype=tf.float32) model_fn = BatchNormClassifier clone_args = (tf_inputs, tf_labels) deploy_config = model_deploy.DeploymentConfig(num_clones=1) self.assertEqual(slim.get_variables(), []) clones = model_deploy.create_clones(deploy_config, model_fn, clone_args) clone = clones[0] self.assertEqual(len(slim.get_variables()), 5) for v in slim.get_variables(): self.assertDeviceEqual(v.device, 'CPU:0') self.assertDeviceEqual(v.value().device, 'CPU:0') self.assertEqual(clone.outputs.op.name, 'BatchNormClassifier/fully_connected/Sigmoid') self.assertEqual(clone.scope, '') self.assertDeviceEqual(clone.device, 'GPU:0') self.assertEqual(len(slim.losses.get_losses()), 1) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) self.assertEqual(len(update_ops), 2)
Example #5
Source File: model_deploy_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testCreateLogisticClassifier(self): g = tf.Graph() with g.as_default(): tf.set_random_seed(0) tf_inputs = tf.constant(self._inputs, dtype=tf.float32) tf_labels = tf.constant(self._labels, dtype=tf.float32) model_fn = LogisticClassifier clone_args = (tf_inputs, tf_labels) deploy_config = model_deploy.DeploymentConfig(num_clones=1) self.assertEqual(slim.get_variables(), []) clones = model_deploy.create_clones(deploy_config, model_fn, clone_args) clone = clones[0] self.assertEqual(len(slim.get_variables()), 2) for v in slim.get_variables(): self.assertDeviceEqual(v.device, 'CPU:0') self.assertDeviceEqual(v.value().device, 'CPU:0') self.assertEqual(clone.outputs.op.name, 'LogisticClassifier/fully_connected/Sigmoid') self.assertEqual(clone.scope, '') self.assertDeviceEqual(clone.device, 'GPU:0') self.assertEqual(len(slim.losses.get_losses()), 1) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) self.assertEqual(update_ops, [])
Example #6
Source File: model_deploy_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testCreateLogisticClassifier(self): g = tf.Graph() with g.as_default(): tf.set_random_seed(0) tf_inputs = tf.constant(self._inputs, dtype=tf.float32) tf_labels = tf.constant(self._labels, dtype=tf.float32) model_fn = LogisticClassifier clone_args = (tf_inputs, tf_labels) deploy_config = model_deploy.DeploymentConfig(num_clones=1) self.assertEqual(slim.get_variables(), []) clones = model_deploy.create_clones(deploy_config, model_fn, clone_args) self.assertEqual(len(slim.get_variables()), 2) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) self.assertEqual(update_ops, []) optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0) total_loss, grads_and_vars = model_deploy.optimize_clones(clones, optimizer) self.assertEqual(len(grads_and_vars), len(tf.trainable_variables())) self.assertEqual(total_loss.op.name, 'total_loss') for g, v in grads_and_vars: self.assertDeviceEqual(g.device, 'GPU:0') self.assertDeviceEqual(v.device, 'CPU:0')
Example #7
Source File: model_deploy_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testCreateSingleclone(self): g = tf.Graph() with g.as_default(): tf.set_random_seed(0) tf_inputs = tf.constant(self._inputs, dtype=tf.float32) tf_labels = tf.constant(self._labels, dtype=tf.float32) model_fn = BatchNormClassifier clone_args = (tf_inputs, tf_labels) deploy_config = model_deploy.DeploymentConfig(num_clones=1) self.assertEqual(slim.get_variables(), []) clones = model_deploy.create_clones(deploy_config, model_fn, clone_args) self.assertEqual(len(slim.get_variables()), 5) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) self.assertEqual(len(update_ops), 2) optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0) total_loss, grads_and_vars = model_deploy.optimize_clones(clones, optimizer) self.assertEqual(len(grads_and_vars), len(tf.trainable_variables())) self.assertEqual(total_loss.op.name, 'total_loss') for g, v in grads_and_vars: self.assertDeviceEqual(g.device, 'GPU:0') self.assertDeviceEqual(v.device, 'CPU:0')
Example #8
Source File: value_functions.py From lirpg with MIT License | 6 votes |
def __init__(self, ob_dim, ac_dim): #pylint: disable=W0613 X = tf.placeholder(tf.float32, shape=[None, ob_dim*2+ac_dim*2+2]) # batch of observations vtarg_n = tf.placeholder(tf.float32, shape=[None], name='vtarg') wd_dict = {} h1 = tf.nn.elu(dense(X, 64, "h1", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict)) h2 = tf.nn.elu(dense(h1, 64, "h2", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict)) vpred_n = dense(h2, 1, "hfinal", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict)[:,0] sample_vpred_n = vpred_n + tf.random_normal(tf.shape(vpred_n)) wd_loss = tf.get_collection("vf_losses", None) loss = tf.reduce_mean(tf.square(vpred_n - vtarg_n)) + tf.add_n(wd_loss) loss_sampled = tf.reduce_mean(tf.square(vpred_n - tf.stop_gradient(sample_vpred_n))) self._predict = U.function([X], vpred_n) optim = kfac.KfacOptimizer(learning_rate=0.001, cold_lr=0.001*(1-0.9), momentum=0.9, \ clip_kl=0.3, epsilon=0.1, stats_decay=0.95, \ async=1, kfac_update=2, cold_iter=50, \ weight_decay_dict=wd_dict, max_grad_norm=None) vf_var_list = [] for var in tf.trainable_variables(): if "vf" in var.name: vf_var_list.append(var) update_op, self.q_runner = optim.minimize(loss, loss_sampled, var_list=vf_var_list) self.do_update = U.function([X, vtarg_n], update_op) #pylint: disable=E1101 U.initialize() # Initialize uninitialized TF variables
Example #9
Source File: build_graph.py From lirpg with MIT License | 6 votes |
def scope_vars(scope, trainable_only=False): """ Get variables inside a scope The scope can be specified as a string Parameters ---------- scope: str or VariableScope scope in which the variables reside. trainable_only: bool whether or not to return only the variables that were marked as trainable. Returns ------- vars: [tf.Variable] list of variables in `scope`. """ return tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES if trainable_only else tf.GraphKeys.GLOBAL_VARIABLES, scope=scope if isinstance(scope, str) else scope.name )
Example #10
Source File: cifar10.py From DOTA_models with Apache License 2.0 | 6 votes |
def _add_loss_summaries(total_loss): """Add summaries for losses in CIFAR-10 model. Generates moving average for all losses and associated summaries for visualizing the performance of the network. Args: total_loss: Total loss from loss(). Returns: loss_averages_op: op for generating moving averages of losses. """ # Compute the moving average of all individual losses and the total loss. loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg') losses = tf.get_collection('losses') loss_averages_op = loss_averages.apply(losses + [total_loss]) # Attach a scalar summary to all individual losses and the total loss; do the # same for the averaged version of the losses. for l in losses + [total_loss]: # Name each loss as '(raw)' and name the moving average version of the loss # as the original loss name. tf.summary.scalar(l.op.name + ' (raw)', l) tf.summary.scalar(l.op.name, loss_averages.average(l)) return loss_averages_op
Example #11
Source File: discriminator.py From SSGAN-Tensorflow with MIT License | 6 votes |
def __call__(self, input): with tf.variable_scope(self.name, reuse=self._reuse): if not self._reuse: print('\033[93m'+self.name+'\033[0m') _ = input num_channel = [32, 64, 128, 256, 256, 512] num_layer = np.ceil(np.log2(min(_.shape.as_list()[1:3]))).astype(np.int) for i in range(num_layer): ch = num_channel[i] if i < len(num_channel) else 512 _ = conv2d(_, ch, self._is_train, info=not self._reuse, norm=self._norm_type, name='conv{}'.format(i+1)) _ = conv2d(_, int(num_channel[i]/4), self._is_train, k=1, s=1, info=not self._reuse, norm='None', name='conv{}'.format(i+2)) _ = conv2d(_, self._num_class+1, self._is_train, k=1, s=1, info=not self._reuse, activation_fn=None, norm='None', name='conv{}'.format(i+3)) _ = tf.squeeze(_) if not self._reuse: log.info('discriminator output {}'.format(_.shape.as_list())) self._reuse = True self.var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.name) return tf.nn.sigmoid(_), _
Example #12
Source File: networks.py From soccer-matlab with BSD 2-Clause "Simplified" License | 6 votes |
def build_graph(self,state,global_step): ''' Builds the computation graph for the critic Inputs: states: tf placeholder inputs to network ''' self.global_step = global_step self.outputs = [state] with tf.variable_scope(self.scope, reuse=self.reuse): for i in range(1,len(self.units)-1): layer = tf.layers.dense(self.outputs[i-1], self.units[i], tf.nn.relu, trainable=self.trainable) self.outputs.append(layer) mu = settings.ACTION_SCALE * tf.layers.dense(self.outputs[-1], self.units[-1], tf.nn.tanh, trainable=self.trainable) sigma = tf.layers.dense(self.outputs[-1], self.units[-1], tf.nn.softplus, trainable=self.trainable) self.outputs.append([mu,sigma]) self.norm_dist = tf.distributions.Normal(loc=mu,scale=sigma) self.params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.scope)
Example #13
Source File: train_image_classifier.py From DOTA_models with Apache License 2.0 | 6 votes |
def _get_variables_to_train(): """Returns a list of variables to train. Returns: A list of variables to train by the optimizer. """ if FLAGS.trainable_scopes is None: return tf.trainable_variables() else: scopes = [scope.strip() for scope in FLAGS.trainable_scopes.split(',')] variables_to_train = [] for scope in scopes: variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope) variables_to_train.extend(variables) return variables_to_train
Example #14
Source File: networks.py From soccer-matlab with BSD 2-Clause "Simplified" License | 6 votes |
def build_graph(self,state,global_step): ''' Builds the computation graph for the critic Inputs: states: tf placeholder inputs to network ''' self.global_step = global_step self.outputs = [state] with tf.variable_scope(self.scope, reuse=self.reuse): for i in range(1,len(self.units)-1): layer = tf.layers.dense(self.outputs[i-1], self.units[i], tf.nn.relu, trainable=self.trainable) self.outputs.append(layer) layer = tf.layers.dense(self.outputs[-1], self.units[-1], trainable=self.trainable) self.outputs.append(layer) self.params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.scope)
Example #15
Source File: collections_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testTotalLossWithoutRegularization(self): batch_size = 5 height, width = 299, 299 num_classes = 1001 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) dense_labels = tf.random_uniform((batch_size, num_classes)) with slim.arg_scope([slim.ops.conv2d, slim.ops.fc], weight_decay=0): logits, end_points = slim.inception.inception_v3( inputs, num_classes=num_classes) # Cross entropy loss for the main softmax prediction. slim.losses.cross_entropy_loss(logits, dense_labels, label_smoothing=0.1, weight=1.0) # Cross entropy loss for the auxiliary softmax head. slim.losses.cross_entropy_loss(end_points['aux_logits'], dense_labels, label_smoothing=0.1, weight=0.4, scope='aux_loss') losses = tf.get_collection(slim.losses.LOSSES_COLLECTION) self.assertEqual(len(losses), 2)
Example #16
Source File: value_functions.py From HardRLWithYoutube with MIT License | 6 votes |
def __init__(self, ob_dim, ac_dim): #pylint: disable=W0613 X = tf.placeholder(tf.float32, shape=[None, ob_dim*2+ac_dim*2+2]) # batch of observations vtarg_n = tf.placeholder(tf.float32, shape=[None], name='vtarg') wd_dict = {} h1 = tf.nn.elu(dense(X, 64, "h1", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict)) h2 = tf.nn.elu(dense(h1, 64, "h2", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict)) vpred_n = dense(h2, 1, "hfinal", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict)[:,0] sample_vpred_n = vpred_n + tf.random_normal(tf.shape(vpred_n)) wd_loss = tf.get_collection("vf_losses", None) loss = tf.reduce_mean(tf.square(vpred_n - vtarg_n)) + tf.add_n(wd_loss) loss_sampled = tf.reduce_mean(tf.square(vpred_n - tf.stop_gradient(sample_vpred_n))) self._predict = U.function([X], vpred_n) optim = kfac.KfacOptimizer(learning_rate=0.001, cold_lr=0.001*(1-0.9), momentum=0.9, \ clip_kl=0.3, epsilon=0.1, stats_decay=0.95, \ async=1, kfac_update=2, cold_iter=50, \ weight_decay_dict=wd_dict, max_grad_norm=None) vf_var_list = [] for var in tf.trainable_variables(): if "vf" in var.name: vf_var_list.append(var) update_op, self.q_runner = optim.minimize(loss, loss_sampled, var_list=vf_var_list) self.do_update = U.function([X, vtarg_n], update_op) #pylint: disable=E1101 U.initialize() # Initialize uninitialized TF variables
Example #17
Source File: variables.py From DOTA_models with Apache License 2.0 | 6 votes |
def add_variable(var, restore=True): """Adds a variable to the MODEL_VARIABLES collection. Optionally it will add the variable to the VARIABLES_TO_RESTORE collection. Args: var: a variable. restore: whether the variable should be added to the VARIABLES_TO_RESTORE collection. """ collections = [MODEL_VARIABLES] if restore: collections.append(VARIABLES_TO_RESTORE) for collection in collections: if var not in tf.get_collection(collection): tf.add_to_collection(collection, var)
Example #18
Source File: cnn_policy.py From lirpg with MIT License | 5 votes |
def get_trainable_variables(self): return tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.scope)
Example #19
Source File: mlp_policy.py From HardRLWithYoutube with MIT License | 5 votes |
def get_trainable_variables(self): return tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.scope)
Example #20
Source File: image_embedding_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def _assertCollectionSize(self, expected_size, collection): actual_size = len(tf.get_collection(collection)) if expected_size != actual_size: self.fail("Found %d items in collection %s (expected %d)." % (actual_size, collection, expected_size))
Example #21
Source File: show_and_tell_model.py From DOTA_models with Apache License 2.0 | 5 votes |
def build_image_embeddings(self): """Builds the image model subgraph and generates image embeddings. Inputs: self.images Outputs: self.image_embeddings """ inception_output = image_embedding.inception_v3( self.images, trainable=self.train_inception, is_training=self.is_training()) self.inception_variables = tf.get_collection( tf.GraphKeys.GLOBAL_VARIABLES, scope="InceptionV3") # Map inception output into embedding space. with tf.variable_scope("image_embedding") as scope: image_embeddings = tf.contrib.layers.fully_connected( inputs=inception_output, num_outputs=self.config.embedding_size, activation_fn=None, weights_initializer=self.initializer, biases_initializer=None, scope=scope) # Save the embedding size in the graph. tf.constant(self.config.embedding_size, name="embedding_size") self.image_embeddings = image_embeddings
Example #22
Source File: collections_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def testRegularizationLosses(self): batch_size = 5 height, width = 299, 299 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) with slim.arg_scope([slim.ops.conv2d, slim.ops.fc], weight_decay=0.00004): slim.inception.inception_v3(inputs) losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) self.assertEqual(len(losses), len(get_variables_by_name('weights')))
Example #23
Source File: collections_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def testVariablesToRestoreWithoutLogits(self): batch_size = 5 height, width = 299, 299 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) with slim.arg_scope([slim.ops.conv2d], batch_norm_params={'decay': 0.9997}): slim.inception.inception_v3(inputs, restore_logits=False) variables_to_restore = tf.get_collection( slim.variables.VARIABLES_TO_RESTORE) self.assertEqual(len(variables_to_restore), 384)
Example #24
Source File: collections_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def testVariablesToRestore(self): batch_size = 5 height, width = 299, 299 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) with slim.arg_scope([slim.ops.conv2d], batch_norm_params={'decay': 0.9997}): slim.inception.inception_v3(inputs) variables_to_restore = tf.get_collection( slim.variables.VARIABLES_TO_RESTORE) self.assertEqual(len(variables_to_restore), 388) self.assertListEqual(variables_to_restore, get_variables())
Example #25
Source File: ops_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def testReuseConvWithWD(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.conv2d(images, 32, [3, 3], weight_decay=0.01, scope='conv1') self.assertEquals(len(variables.get_variables()), 2) self.assertEquals( len(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)), 1) ops.conv2d(images, 32, [3, 3], weight_decay=0.01, scope='conv1', reuse=True) self.assertEquals(len(variables.get_variables()), 2) self.assertEquals( len(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)), 1)
Example #26
Source File: ops_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def testReuseVars(self): height, width = 3, 3 with self.test_session() as sess: image_shape = (10, height, width, 3) image_values = np.random.rand(*image_shape) expected_mean = np.mean(image_values, axis=(0, 1, 2)) expected_var = np.var(image_values, axis=(0, 1, 2)) images = tf.constant(image_values, shape=image_shape, dtype=tf.float32) output = ops.batch_norm(images, decay=0.1, is_training=False) update_ops = tf.get_collection(ops.UPDATE_OPS_COLLECTION) with tf.control_dependencies(update_ops): output = tf.identity(output) # Initialize all variables sess.run(tf.global_variables_initializer()) moving_mean = variables.get_variables('BatchNorm/moving_mean')[0] moving_variance = variables.get_variables('BatchNorm/moving_variance')[0] mean, variance = sess.run([moving_mean, moving_variance]) # After initialization moving_mean == 0 and moving_variance == 1. self.assertAllClose(mean, [0] * 3) self.assertAllClose(variance, [1] * 3) # Simulate assigment from saver restore. init_assigns = [tf.assign(moving_mean, expected_mean), tf.assign(moving_variance, expected_var)] sess.run(init_assigns) for _ in range(10): sess.run([output], {images: np.random.rand(*image_shape)}) mean = moving_mean.eval() variance = moving_variance.eval() # Although we feed different images, the moving_mean and moving_variance # shouldn't change. self.assertAllClose(mean, expected_mean) self.assertAllClose(variance, expected_var)
Example #27
Source File: ops_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def testComputeMovingVars(self): height, width = 3, 3 with self.test_session() as sess: image_shape = (10, height, width, 3) image_values = np.random.rand(*image_shape) expected_mean = np.mean(image_values, axis=(0, 1, 2)) expected_var = np.var(image_values, axis=(0, 1, 2)) images = tf.constant(image_values, shape=image_shape, dtype=tf.float32) output = ops.batch_norm(images, decay=0.1) update_ops = tf.get_collection(ops.UPDATE_OPS_COLLECTION) with tf.control_dependencies(update_ops): output = tf.identity(output) # Initialize all variables sess.run(tf.global_variables_initializer()) moving_mean = variables.get_variables('BatchNorm/moving_mean')[0] moving_variance = variables.get_variables('BatchNorm/moving_variance')[0] mean, variance = sess.run([moving_mean, moving_variance]) # After initialization moving_mean == 0 and moving_variance == 1. self.assertAllClose(mean, [0] * 3) self.assertAllClose(variance, [1] * 3) for _ in range(10): sess.run([output]) mean = moving_mean.eval() variance = moving_variance.eval() # After 10 updates with decay 0.1 moving_mean == expected_mean and # moving_variance == expected_var. self.assertAllClose(mean, expected_mean) self.assertAllClose(variance, expected_var)
Example #28
Source File: ops_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def testCreateMovingVars(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) _ = ops.batch_norm(images, moving_vars='moving_vars') moving_mean = tf.get_collection('moving_vars', 'BatchNorm/moving_mean') self.assertEquals(len(moving_mean), 1) self.assertEquals(moving_mean[0].op.name, 'BatchNorm/moving_mean') moving_variance = tf.get_collection('moving_vars', 'BatchNorm/moving_variance') self.assertEquals(len(moving_variance), 1) self.assertEquals(moving_variance[0].op.name, 'BatchNorm/moving_variance')
Example #29
Source File: ops_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def testReuseUpdateOps(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images, scope='bn') self.assertEquals(len(tf.get_collection(ops.UPDATE_OPS_COLLECTION)), 2) ops.batch_norm(images, scope='bn', reuse=True) self.assertEquals(len(tf.get_collection(ops.UPDATE_OPS_COLLECTION)), 4)
Example #30
Source File: ops_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def testReuseVariables(self): height, width = 3, 3 with self.test_session(): images = tf.random_uniform((5, height, width, 3), seed=1) ops.batch_norm(images, scale=True, scope='bn') ops.batch_norm(images, scale=True, scope='bn', reuse=True) beta = variables.get_variables_by_name('beta') gamma = variables.get_variables_by_name('gamma') self.assertEquals(len(beta), 1) self.assertEquals(len(gamma), 1) moving_vars = tf.get_collection('moving_vars') self.assertEquals(len(moving_vars), 2)