Python tensorflow.linspace() Examples
The following are 30
code examples of tensorflow.linspace().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: Dense_Transformer_Networks_3D.py From Unet_3D with GNU General Public License v3.0 | 6 votes |
def __init__(self,input_shape,control_points_ratio): self.num_batch = input_shape[0] self.depth = input_shape[1] self.height = input_shape[2] self.width = input_shape[3] self.num_channels = input_shape[4] self.out_height = self.height self.out_width = self.width self.out_depth = self.depth self.X_controlP_number = int(input_shape[3] / \ (control_points_ratio)) self.Y_controlP_number = int(input_shape[2] / \ (control_points_ratio)) self.Z_controlP_number = int(input_shape[1] / \ (control_points_ratio)) init_x = np.linspace(-5,5,self.X_controlP_number) init_y = np.linspace(-5,5,self.Y_controlP_number) init_z = np.linspace(-5,5,self.Z_controlP_number) x_s = np.tile(init_x, [self.Y_controlP_number*self.Z_controlP_number]) y_s = np.tile(np.repeat(init_y,self.X_controlP_number),[self.Z_controlP_number]) z_s = np.repeat(init_z,self.X_controlP_number*self.Y_controlP_number) self.initial = np.array([x_s,y_s,z_s])
Example #2
Source File: ops.py From mac-network with Apache License 2.0 | 6 votes |
def locationPE(h, w, dim, outDim = -1, addBias = True): x = tf.expand_dims(tf.to_float(tf.linspace(-config.locationBias, config.locationBias, w)), axis = -1) y = tf.expand_dims(tf.to_float(tf.linspace(-config.locationBias, config.locationBias, h)), axis = -1) i = tf.expand_dims(tf.to_float(tf.range(dim)), axis = 0) peSinX = tf.sin(x / (tf.pow(10000.0, i / dim))) peCosX = tf.cos(x / (tf.pow(10000.0, i / dim))) peSinY = tf.sin(y / (tf.pow(10000.0, i / dim))) peCosY = tf.cos(y / (tf.pow(10000.0, i / dim))) peSinX = tf.tile(tf.expand_dims(peSinX, axis = 0), [h, 1, 1]) peCosX = tf.tile(tf.expand_dims(peCosX, axis = 0), [h, 1, 1]) peSinY = tf.tile(tf.expand_dims(peSinY, axis = 1), [1, w, 1]) peCosY = tf.tile(tf.expand_dims(peCosY, axis = 1), [1, w, 1]) grid = tf.concat([peSinX, peCosX, peSinY, peCosY], axis = -1) dim *= 4 if outDim > 0: grid = linear(grid, dim, outDim, addBias = addBias, name = "locationPE") dim = outDim return grid, dim
Example #3
Source File: triangle_rasterizer.py From graphics with Apache License 2.0 | 6 votes |
def _perspective_correct_barycentrics(vertices_per_pixel, model_to_eye_matrix, perspective_matrix, image_size_float): """Creates the pixels grid and computes barycentrics.""" # Construct the pixel grid with half-integer pixel centers. width = image_size_float[1] height = image_size_float[0] px = tf.linspace(0.5, width - 0.5, num=int(width)) py = tf.linspace(0.5, height - 0.5, num=int(height)) xv, yv = tf.meshgrid(px, py) pixel_position = tf.stack((xv, yv), axis=-1) return glm.perspective_correct_barycentrics(vertices_per_pixel, pixel_position, model_to_eye_matrix, perspective_matrix, (width, height))
Example #4
Source File: grid.py From graphics with Apache License 2.0 | 6 votes |
def _grid(starts, stops, nums): """Generates a M-D uniform axis-aligned grid. Warning: This op is not differentiable. Indeed, the gradient of tf.linspace and tf.meshgrid are currently not defined. Args: starts: A tensor of shape `[M]` representing the start points for each dimension. stops: A tensor of shape `[M]` representing the end points for each dimension. nums: A tensor of shape `[M]` representing the number of subdivisions for each dimension. Returns: A tensor of shape `[nums[0], ..., nums[M-1], M]` containing an M-D uniform grid. """ params = [tf.unstack(tensor) for tensor in [starts, stops, nums]] layout = [tf.linspace(*param) for param in zip(*params)] return tf.stack(tf.meshgrid(*layout, indexing="ij"), axis=-1)
Example #5
Source File: model.py From DeepWarp with Apache License 2.0 | 6 votes |
def meshgrid(self, height, width, ones_flag=None): # get the mesh-grid in a special area(-1,1) # output: # @shape --> 2,H*W # @explanation --> (0,:) means all x-coordinate in a mesh # (1,:) means all y-coordinate in a mesh with tf.variable_scope('meshgrid'): y_linspace = tf.linspace(-1., 1., height) x_linspace = tf.linspace(-1., 1., width) x_coordinates, y_coordinates = tf.meshgrid(x_linspace, y_linspace) x_coordinates = tf.reshape(x_coordinates, shape=[-1]) y_coordinates = tf.reshape(y_coordinates, shape=[-1]) if ones_flag is None: indices_grid = tf.stack([x_coordinates, y_coordinates], axis=0) else: indices_grid = tf.stack([x_coordinates, y_coordinates, tf.ones_like(x_coordinates)], axis=0) return indices_grid
Example #6
Source File: problems.py From tfdiffeq with MIT License | 6 votes |
def construct_problem(device, npts=10, ode='constant', reverse=False): with tf.device(device): f = PROBLEMS[ode]() t_points = tf.linspace(1., 8., npts) sol = f.y_exact(t_points) def _flip(x, dim): # indices = [slice(None)] * len(x.shape) # indices[dim] = tf.range(x.shape[dim] - 1, -1, -1, dtype=tf.int64) return x[::-1] # x[list(indices)] if reverse: t_points = tf.identity(_flip(t_points, 0)) sol = tf.identity(_flip(sol, 0)) return f, sol[0], t_points, sol
Example #7
Source File: geo_utils.py From DeepMatchVO with MIT License | 6 votes |
def meshgrid(batch, height, width, is_homogeneous=True): """Construct a 2D meshgrid. Args: batch: batch size height: height of the grid width: width of the grid is_homogeneous: whether to return in homogeneous coordinates Returns: x,y grid coordinates [batch, 2 (3 if homogeneous), height, width] """ x_t = tf.matmul(tf.ones(shape=tf.stack([height, 1])), tf.transpose(tf.expand_dims( tf.linspace(-1.0, 1.0, width), 1), [1, 0])) y_t = tf.matmul(tf.expand_dims(tf.linspace(-1.0, 1.0, height), 1), tf.ones(shape=tf.stack([1, width]))) x_t = (x_t + 1.0) * 0.5 * tf.cast(width - 1, tf.float32) y_t = (y_t + 1.0) * 0.5 * tf.cast(height - 1, tf.float32) if is_homogeneous: ones = tf.ones_like(x_t) coords = tf.stack([x_t, y_t, ones], axis=0) else: coords = tf.stack([x_t, y_t], axis=0) coords = tf.tile(tf.expand_dims(coords, 0), [batch, 1, 1, 1]) return coords
Example #8
Source File: gradient_tests.py From tfdiffeq with MIT License | 6 votes |
def problem(self): tf.keras.backend.set_floatx('float64') class Odefunc(tf.keras.Model): def __init__(self): super(Odefunc, self).__init__() self.A = tf.Variable([[-0.1, -2.0], [2.0, -0.1]], dtype=tf.float64) self.unused_module = tf.keras.layers.Dense(5, dtype=tf.float64) self.unused_module.build((5,)) def call(self, t, y): y = tfdiffeq.cast_double(y) return tf.linalg.matvec(self.A, y ** 3) y0 = tf.convert_to_tensor([2., 0.], dtype=tf.float64) t_points = tf.linspace( tf.constant(0., dtype=tf.float64), tf.constant(25., dtype=tf.float64), 10 ) func = Odefunc() return func, y0, t_points
Example #9
Source File: spatial_transformer.py From hfnet with MIT License | 6 votes |
def _meshgrid(height, width): with tf.name_scope('meshgrid'): # This should be equivalent to: # x_t, y_t = np.meshgrid(np.linspace(-1, 1, width), # np.linspace(-1, 1, height)) # ones = np.ones(np.prod(x_t.shape)) # grid = np.vstack([x_t.flatten(), y_t.flatten(), ones]) x_t = tf.matmul(tf.ones(shape=tf.stack([height, 1])), tf.transpose(tf.expand_dims(tf.linspace(-1.0, 1.0, width), 1), [1, 0])) y_t = tf.matmul(tf.expand_dims(tf.linspace(-1.0, 1.0, height), 1), tf.ones(shape=tf.stack([1, width]))) x_t_flat = tf.reshape(x_t, (1, -1)) y_t_flat = tf.reshape(y_t, (1, -1)) ones = tf.ones_like(x_t_flat) grid = tf.concat(axis=0, values=[x_t_flat, y_t_flat, ones]) return grid
Example #10
Source File: det_tools.py From hfnet with MIT License | 6 votes |
def soft_argmax_2d(patches_bhwc, patch_size, do_softmax=True, com_strength=10): # Returns the relative soft-argmax position, in the -1 to 1 coordinate # system of the patch width = patch_size height = patch_size x_t = tf.matmul(tf.ones(shape=tf.stack([height, 1])), tf.transpose(tf.expand_dims(tf.linspace(-1.0, 1.0, width), 1), [1, 0])) y_t = tf.matmul(tf.expand_dims(tf.linspace(-1.0, 1.0, height), 1), tf.ones(shape=tf.stack([1, width]))) xy_grid = tf.stack([x_t, y_t], axis=-1)[None] # BHW2 maxes_bhwc = patches_bhwc if do_softmax: exps_bhwc = tf.exp( com_strength*(patches_bhwc - tf.reduce_max( patches_bhwc, axis=(1, 2), keep_dims=True))) maxes_bhwc = exps_bhwc / ( tf.reduce_sum(exps_bhwc, axis=(1, 2), keep_dims=True) + 1e-8) dxdy = tf.reduce_sum(xy_grid * maxes_bhwc, axis=(1,2)) return dxdy
Example #11
Source File: spatial_transformer.py From Recursive-Cascaded-Networks with MIT License | 6 votes |
def _meshgrid(self, height, width, depth): x_t = tf.matmul(tf.ones(shape=tf.stack([height, 1])), tf.transpose(tf.expand_dims(tf.linspace(0.0, tf.cast(width, tf.float32)-1.0, width), 1), [1, 0])) y_t = tf.matmul(tf.expand_dims(tf.linspace(0.0, tf.cast(height, tf.float32)-1.0, height), 1), tf.ones(shape=tf.stack([1, width]))) x_t = tf.tile(tf.expand_dims(x_t, 2), [1, 1, depth]) y_t = tf.tile(tf.expand_dims(y_t, 2), [1, 1, depth]) z_t = tf.linspace(0.0, tf.cast(depth, tf.float32)-1.0, depth) z_t = tf.expand_dims(tf.expand_dims(z_t, 0), 0) z_t = tf.tile(z_t, [height, width, 1]) return x_t, y_t, z_t
Example #12
Source File: tools.py From tf-monodepth2 with MIT License | 6 votes |
def meshgrid(batch, height, width, is_homogeneous=True): """Construct a 2D meshgrid. Args: batch: batch size height: height of the grid width: width of the grid is_homogeneous: whether to return in homogeneous coordinates Returns: x,y grid coordinates [batch, 2 (3 if homogeneous), height, width] """ x_t = tf.matmul(tf.ones(shape=tf.stack([height, 1])), tf.transpose(tf.expand_dims( tf.linspace(-1.0, 1.0, width), 1), [1, 0])) y_t = tf.matmul(tf.expand_dims(tf.linspace(-1.0, 1.0, height), 1), tf.ones(shape=tf.stack([1, width]))) x_t = (x_t + 1.0) * 0.5 * tf.cast(width - 1, tf.float32) y_t = (y_t + 1.0) * 0.5 * tf.cast(height - 1, tf.float32) if is_homogeneous: ones = tf.ones_like(x_t) coords = tf.stack([x_t, y_t, ones], axis=0) else: coords = tf.stack([x_t, y_t], axis=0) coords = tf.tile(tf.expand_dims(coords, 0), [batch, 1, 1, 1]) return coords
Example #13
Source File: learner.py From seed_rl with Apache License 2.0 | 6 votes |
def get_actors_epsilon(actor_ids, num_training_actors, num_eval_actors, eval_epsilon): """Per-actor epsilon as in Apex and R2D2. Args: actor_ids: <int32>[inference_batch_size], the actor task IDs (in range [0, num_training_actors+num_eval_actors)). num_training_actors: Number of training actors. Training actors should have IDs in [0, num_training_actors). num_eval_actors: Number of evaluation actors. Eval actors should have IDs in [num_training_actors, num_training_actors + num_eval_actors). eval_epsilon: Epsilon used for eval actors. Returns: A 1D float32 tensor with one epsilon for each input actor ID. """ # <float32>[num_training_actors + num_eval_actors] epsilons = tf.concat( [tf.math.pow(0.4, tf.linspace(1., 8., num=num_training_actors)), tf.constant([eval_epsilon] * num_eval_actors)], axis=0) return tf.gather(epsilons, actor_ids)
Example #14
Source File: utils.py From GeoNet with MIT License | 6 votes |
def meshgrid(batch, height, width, is_homogeneous=True): """Construct a 2D meshgrid. Args: batch: batch size height: height of the grid width: width of the grid is_homogeneous: whether to return in homogeneous coordinates Returns: x,y grid coordinates [batch, 2 (3 if homogeneous), height, width] """ x_t = tf.matmul(tf.ones(shape=tf.stack([height, 1])), tf.transpose(tf.expand_dims( tf.linspace(-1.0, 1.0, width), 1), [1, 0])) y_t = tf.matmul(tf.expand_dims(tf.linspace(-1.0, 1.0, height), 1), tf.ones(shape=tf.stack([1, width]))) x_t = (x_t + 1.0) * 0.5 * tf.cast(width - 1, tf.float32) y_t = (y_t + 1.0) * 0.5 * tf.cast(height - 1, tf.float32) if is_homogeneous: ones = tf.ones_like(x_t) coords = tf.stack([x_t, y_t, ones], axis=0) else: coords = tf.stack([x_t, y_t], axis=0) coords = tf.tile(tf.expand_dims(coords, 0), [batch, 1, 1, 1]) return coords
Example #15
Source File: pcn_emd.py From pcn with MIT License | 6 votes |
def create_decoder(self, features): with tf.variable_scope('decoder', reuse=tf.AUTO_REUSE): coarse = mlp(features, [1024, 1024, self.num_coarse * 3]) coarse = tf.reshape(coarse, [-1, self.num_coarse, 3]) with tf.variable_scope('folding', reuse=tf.AUTO_REUSE): x = tf.linspace(-self.grid_scale, self.grid_scale, self.grid_size) y = tf.linspace(-self.grid_scale, self.grid_scale, self.grid_size) grid = tf.meshgrid(x, y) grid = tf.expand_dims(tf.reshape(tf.stack(grid, axis=2), [-1, 2]), 0) grid_feat = tf.tile(grid, [features.shape[0], self.num_coarse, 1]) point_feat = tf.tile(tf.expand_dims(coarse, 2), [1, 1, self.grid_size ** 2, 1]) point_feat = tf.reshape(point_feat, [-1, self.num_fine, 3]) global_feat = tf.tile(tf.expand_dims(features, 1), [1, self.num_fine, 1]) feat = tf.concat([grid_feat, point_feat, global_feat], axis=2) center = tf.tile(tf.expand_dims(coarse, 2), [1, 1, self.grid_size ** 2, 1]) center = tf.reshape(center, [-1, self.num_fine, 3]) fine = mlp_conv(feat, [512, 512, 3]) + center return coarse, fine
Example #16
Source File: Dense_Transformer_Networks_3D.py From Unet_3D with GNU General Public License v3.0 | 6 votes |
def _local_Networks(self,input_dim,x): with tf.variable_scope('_local_Networks'): x = tf.reshape(x,[-1,self.height*self.width*self.depth*self.num_channels]) W_fc_loc1 = weight_variable([self.height*self.width*self.depth*self.num_channels, 20]) b_fc_loc1 = bias_variable([20]) W_fc_loc2 = weight_variable([20, self.X_controlP_number*self.Y_controlP_number*self.Z_controlP_number*3]) initial = self.initial.astype('float32') initial = initial.flatten() b_fc_loc2 = tf.Variable(initial_value=initial, name='b_fc_loc2') h_fc_loc1 = tf.nn.tanh(tf.matmul(x, W_fc_loc1) + b_fc_loc1) h_fc_loc2 = tf.nn.tanh(tf.matmul(h_fc_loc1, W_fc_loc2) + b_fc_loc2) #temp use if Debug == True: x = np.linspace(-1.0,1.0,self.X_controlP_number) y = np.linspace(-1.0,1.0,self.Y_controlP_number) z = np.linspace(-1.0,1.0,self.Z_controlP_number) x_s = tf.tile(x,[self.Y_controlP_number*self.Z_controlP_number],'float64') y_s = tf.tile(self._repeat(y,self.X_controlP_number,'float64'),[self.Z_controlP_number]) z_s = self._repeat(z,self.X_controlP_number*self.Y_controlP_number,'float64') h_fc_loc2 = tf.concat([x_s,y_s,z_s],0) h_fc_loc2 = tf.tile(h_fc_loc2,[self.num_batch]) h_fc_loc2 = tf.reshape(h_fc_loc2,[self.num_batch,-1]) return h_fc_loc2
Example #17
Source File: pcn_cd.py From pcn with MIT License | 6 votes |
def create_decoder(self, features): with tf.variable_scope('decoder', reuse=tf.AUTO_REUSE): coarse = mlp(features, [1024, 1024, self.num_coarse * 3]) coarse = tf.reshape(coarse, [-1, self.num_coarse, 3]) with tf.variable_scope('folding', reuse=tf.AUTO_REUSE): grid = tf.meshgrid(tf.linspace(-0.05, 0.05, self.grid_size), tf.linspace(-0.05, 0.05, self.grid_size)) grid = tf.expand_dims(tf.reshape(tf.stack(grid, axis=2), [-1, 2]), 0) grid_feat = tf.tile(grid, [features.shape[0], self.num_coarse, 1]) point_feat = tf.tile(tf.expand_dims(coarse, 2), [1, 1, self.grid_size ** 2, 1]) point_feat = tf.reshape(point_feat, [-1, self.num_fine, 3]) global_feat = tf.tile(tf.expand_dims(features, 1), [1, self.num_fine, 1]) feat = tf.concat([grid_feat, point_feat, global_feat], axis=2) center = tf.tile(tf.expand_dims(coarse, 2), [1, 1, self.grid_size ** 2, 1]) center = tf.reshape(center, [-1, self.num_fine, 3]) fine = mlp_conv(feat, [512, 512, 3]) + center return coarse, fine
Example #18
Source File: Motion.py From VideoSuperResolution with MIT License | 6 votes |
def _grid_norm(width, height, bounds=(-1.0, 1.0)): """generate a normalized mesh grid Args: width: width of the pixels(mesh) height: height of the pixels bounds: normalized lower and upper bounds Return: This should be equivalent to: >>> x_t, y_t = np.meshgrid(np.linspace(-1, 1, width), >>> np.linspace(-1, 1, height)) >>> ones = np.ones(np.prod(x_t.shape)) >>> grid = np.vstack([x_t.flatten(), y_t.flatten(), ones]) """ x_t = tf.matmul(tf.ones(shape=tf.stack([height, 1])), tf.transpose(tf.expand_dims( tf.linspace(*bounds, width), 1), [1, 0])) y_t = tf.matmul(tf.expand_dims(tf.linspace(*bounds, height), 1), tf.ones(shape=tf.stack([1, width]))) grid = tf.stack([x_t, y_t], axis=-1) return grid
Example #19
Source File: transform.py From neural-flow-style with MIT License | 6 votes |
def rot_mat_uniform(phi0, phi1, phi_unit, theta0, theta1, theta_unit): if phi_unit == 0: phi = [(phi1-phi0)/2] else: n_phi = np.abs(phi1-phi0) / float(phi_unit) + 1 phi = np.linspace(phi0, phi1, n_phi, endpoint=True) if theta_unit == 0: theta = [(theta1-theta0)/2] else: n_theta = np.abs(theta1-theta0) / float(theta_unit) + 1 theta = np.linspace(theta0, theta1, n_theta, endpoint=True) views = [] for phi_ in phi: for theta_ in theta: views.append({'phi':phi_, 'theta':theta_}) return views
Example #20
Source File: spatial_transformer.py From pyslam with GNU General Public License v3.0 | 6 votes |
def _meshgrid(height, width): with tf.variable_scope('_meshgrid'): # This should be equivalent to: # x_t, y_t = np.meshgrid(np.linspace(-1, 1, width), # np.linspace(-1, 1, height)) # ones = np.ones(np.prod(x_t.shape)) # grid = np.vstack([x_t.flatten(), y_t.flatten(), ones]) x_t = tf.matmul(tf.ones(shape=tf.stack([height, 1])), tf.transpose(tf.expand_dims(tf.linspace(-1.0, 1.0, width), 1), [1, 0])) y_t = tf.matmul(tf.expand_dims(tf.linspace(-1.0, 1.0, height), 1), tf.ones(shape=tf.stack([1, width]))) x_t_flat = tf.reshape(x_t, (1, -1)) y_t_flat = tf.reshape(y_t, (1, -1)) ones = tf.ones_like(x_t_flat) grid = tf.concat(axis=0, values=[x_t_flat, y_t_flat, ones]) return grid
Example #21
Source File: projector.py From stereo-magnification with Apache License 2.0 | 6 votes |
def meshgrid_abs(batch, height, width, is_homogeneous=True): """Construct a 2D meshgrid in the absolute coordinates. Args: batch: batch size height: height of the grid width: width of the grid is_homogeneous: whether to return in homogeneous coordinates Returns: x,y grid coordinates [batch, 2 (3 if homogeneous), height, width] """ xs = tf.linspace(0.0, tf.cast(width-1, tf.float32), width) ys = tf.linspace(0.0, tf.cast(height-1, tf.float32), height) xs, ys = tf.meshgrid(xs, ys) if is_homogeneous: ones = tf.ones_like(xs) coords = tf.stack([xs, ys, ones], axis=0) else: coords = tf.stack([xs, ys], axis=0) coords = tf.tile(tf.expand_dims(coords, 0), [batch, 1, 1, 1]) return coords
Example #22
Source File: videosr_ops.py From PFNL with MIT License | 6 votes |
def meshgrid(height, width): with tf.variable_scope('_meshgrid'): # This should be equivalent to: # x_t, y_t = np.meshgrid(np.linspace(-1, 1, width), # np.linspace(-1, 1, height)) # ones = np.ones(np.prod(x_t.shape)) # grid = np.vstack([x_t.flatten(), y_t.flatten(), ones]) # with tf.device('/cpu:0'): # x_t = tf.matmul(tf.ones(shape=tf.pack([height, 1])), # tf.transpose(tf.expand_dims(tf.linspace(0.0, -1.0 + width, width), 1), [1, 0])) # y_t = tf.matmul(tf.expand_dims(tf.linspace(0.0, -1.0 + height, height), 1), # tf.ones(shape=tf.pack([1, width]))) # x_t = tf.expand_dims(x_t, 2) # y_t = tf.expand_dims(y_t, 2) # grid = tf.concat(2, [x_t, y_t]) with tf.device('/cpu:0'): grid = tf.meshgrid(list(range(height)), list(range(width)), indexing='ij') grid = tf.cast(tf.stack(grid, axis=2)[:, :, ::-1], tf.float32) return grid
Example #23
Source File: RigidTransformation3DImputation.py From aitom with GNU General Public License v3.0 | 6 votes |
def _mgrid(self, *args, **kwargs): """ create orthogonal grid similar to np.mgrid Parameters ---------- args : int number of points on each axis low : float minimum coordinate value high : float maximum coordinate value Returns ------- grid : tf.Tensor [len(args), args[0], ...] orthogonal grid """ low = kwargs.pop("low", -1) high = kwargs.pop("high", 1) low = tf.to_float(low) high = tf.to_float(high) coords = (tf.linspace(low, high, arg) for arg in args) grid = tf.stack(tf.meshgrid(*coords, indexing='ij')) return grid
Example #24
Source File: spatial_transformer.py From lmdis-rep with Apache License 2.0 | 6 votes |
def _meshgrid(height, width): with tf.variable_scope('_meshgrid'): # This should be equivalent to: # x_t, y_t = np.meshgrid(np.linspace(-1, 1, width), # np.linspace(-1, 1, height)) # ones = np.ones(np.prod(x_t.shape)) # grid = np.vstack([x_t.flatten(), y_t.flatten(), ones]) x_t = tf.matmul(tf.ones(shape=tf.stack([height, 1])), tf.transpose(tf.expand_dims(tf.linspace(-1.0, 1.0, width), 1), [1, 0])) y_t = tf.matmul(tf.expand_dims(tf.linspace(-1.0, 1.0, height), 1), tf.ones(shape=tf.stack([1, width]))) x_t_flat = tf.reshape(x_t, (1, -1)) y_t_flat = tf.reshape(y_t, (1, -1)) ones = tf.ones_like(x_t_flat) grid = tf.concat(axis=0, values=[x_t_flat, y_t_flat, ones]) return grid
Example #25
Source File: project.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def _meshgrid_abs(height, width): """Meshgrid in the absolute coordinates.""" x_t = tf.matmul( tf.ones(shape=tf.stack([height, 1])), tf.transpose(tf.expand_dims(tf.linspace(-1.0, 1.0, width), 1), [1, 0])) y_t = tf.matmul( tf.expand_dims(tf.linspace(-1.0, 1.0, height), 1), tf.ones(shape=tf.stack([1, width]))) x_t = (x_t + 1.0) * 0.5 * tf.cast(width - 1, tf.float32) y_t = (y_t + 1.0) * 0.5 * tf.cast(height - 1, tf.float32) x_t_flat = tf.reshape(x_t, (1, -1)) y_t_flat = tf.reshape(y_t, (1, -1)) ones = tf.ones_like(x_t_flat) grid = tf.concat([x_t_flat, y_t_flat, ones], axis=0) return grid
Example #26
Source File: Dense_Transformer_Networks_3D.py From Unet_3D with GNU General Public License v3.0 | 5 votes |
def _makeT(self,cp): with tf.variable_scope('_makeT'): cp = tf.reshape(cp,(-1,3,self.X_controlP_number*self.Y_controlP_number*self.Z_controlP_number)) cp = tf.cast(cp,'float32') N_f = tf.shape(cp)[0] #c_s x,y,z = tf.linspace(-1.,1.,self.X_controlP_number),tf.linspace(-1.,1.,self.Y_controlP_number),tf.linspace(-1.,1.,self.Z_controlP_number) x = tf.tile(x,[self.Y_controlP_number*self.Z_controlP_number]) y = tf.tile(self._repeat(y,self.X_controlP_number,'float32'),[self.Z_controlP_number]) z = self._repeat(z,self.X_controlP_number*self.Y_controlP_number,'float32') xs,ys,zs = tf.transpose(tf.reshape(x,(-1,1))),tf.transpose(tf.reshape(y,(-1,1))),tf.transpose(tf.reshape(z,(-1,1))) cp_s = tf.concat([xs,ys,zs],0) cp_s_trans = tf.transpose(cp_s) # (4*4*4)*3 -> 64 * 3 ##===Compute distance R xs_trans,ys_trans,zs_trans = tf.transpose(tf.stack([xs],axis=2),perm=[1,0,2]),tf.transpose(tf.stack([ys],axis=2),perm=[1,0,2]),tf.transpose(tf.stack([zs],axis=2),perm=[1,0,2]) xs, xs_trans = tf.meshgrid(xs,xs_trans);ys, ys_trans = tf.meshgrid(ys,ys_trans);zs, zs_trans = tf.meshgrid(zs,zs_trans) Rx,Ry, Rz = tf.square(tf.subtract(xs,xs_trans)),tf.square(tf.subtract(ys,ys_trans)),tf.square(tf.subtract(zs,zs_trans)) R = tf.add_n([Rx,Ry,Rz]) R = tf.multiply(R,tf.log(tf.clip_by_value(R,1e-10,1e+10))) ones = tf.ones([self.Y_controlP_number*self.X_controlP_number*self.Z_controlP_number,1],tf.float32) ones_trans = tf.transpose(ones) zeros = tf.zeros([4,4],tf.float32) Deltas1 = tf.concat([ones, cp_s_trans, R],1) Deltas2 = tf.concat([ones_trans,cp_s],0) Deltas2 = tf.concat([zeros,Deltas2],1) Deltas = tf.concat([Deltas1,Deltas2],0) ##get deltas_inv Deltas_inv = tf.matrix_inverse(Deltas) Deltas_inv = tf.expand_dims(Deltas_inv,0) Deltas_inv = tf.reshape(Deltas_inv,[-1]) Deltas_inv_f = tf.tile(Deltas_inv,tf.stack([N_f])) Deltas_inv_f = tf.reshape(Deltas_inv_f,tf.stack([N_f,self.X_controlP_number*self.Y_controlP_number*self.Z_controlP_number+4, -1])) cp_trans =tf.transpose(cp,perm=[0,2,1]) zeros_f_In = tf.zeros([N_f,4,3],tf.float32) cp = tf.concat([cp_trans,zeros_f_In],1) T = tf.transpose(tf.matmul(Deltas_inv_f,cp),[0,2,1]) return T
Example #27
Source File: project.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def _meshgrid_abs(height, width): """Meshgrid in the absolute coordinates.""" x_t = tf.matmul( tf.ones(shape=tf.stack([height, 1])), tf.transpose(tf.expand_dims(tf.linspace(-1.0, 1.0, width), 1), [1, 0])) y_t = tf.matmul( tf.expand_dims(tf.linspace(-1.0, 1.0, height), 1), tf.ones(shape=tf.stack([1, width]))) x_t = (x_t + 1.0) * 0.5 * tf.cast(width - 1, tf.float32) y_t = (y_t + 1.0) * 0.5 * tf.cast(height - 1, tf.float32) x_t_flat = tf.reshape(x_t, (1, -1)) y_t_flat = tf.reshape(y_t, (1, -1)) ones = tf.ones_like(x_t_flat) grid = tf.concat([x_t_flat, y_t_flat, ones], axis=0) return grid
Example #28
Source File: nbeats_layer.py From Time-series-prediction with MIT License | 5 votes |
def linspace(self,backcast_length, forecast_length): lin_space = tf.linspace(-float(backcast_length),float(forecast_length), backcast_length+forecast_length) b_ls=lin_space[:backcast_length] f_ls=lin_space[backcast_length:] return b_ls, f_ls
Example #29
Source File: spatial_transform_ops.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def _coordinate_vector_1d(start, end, size, align_endpoints): """Generates uniformly spaced coordinate vector. Args: start: A float tensor of shape [batch, num_boxes] indicating start values. end: A float tensor of shape [batch, num_boxes] indicating end values. size: Number of points in coordinate vector. align_endpoints: Whether to align first and last points exactly to endpoints. Returns: A 3D float tensor of shape [batch, num_boxes, size] containing grid coordinates. """ start = tf.expand_dims(start, -1) end = tf.expand_dims(end, -1) length = end - start if align_endpoints: relative_grid_spacing = tf.linspace(0.0, 1.0, size) offset = 0 if size > 1 else length / 2 else: relative_grid_spacing = tf.linspace(0.0, 1.0, size + 1)[:-1] offset = length / (2 * size) relative_grid_spacing = tf.reshape(relative_grid_spacing, [1, 1, size]) relative_grid_spacing = tf.cast(relative_grid_spacing, dtype=start.dtype) absolute_grid = start + offset + relative_grid_spacing * length return absolute_grid
Example #30
Source File: Dense_Transformer_Networks_3D.py From Unet_3D with GNU General Public License v3.0 | 5 votes |
def _meshgrid(self): with tf.variable_scope('_meshgrid'): x_use = tf.linspace(-1.0, 1.0, self.out_height) y_use = tf.linspace(-1.0, 1.0, self.out_width) z_use = tf.linspace(-1.0, 1.0, self.out_depth) x_t = tf.tile(x_use,[self.out_width*self.out_depth]) y_t = tf.tile(self._repeat(y_use,self.out_height,'float32'),[self.out_depth]) z_t = self._repeat(z_use,self.out_height*self.out_width,'float32') x_t_flat = tf.reshape(x_t, (1, -1)) y_t_flat = tf.reshape(y_t, (1, -1)) z_t_flat = tf.reshape(z_t, (1, -1)) px,py,pz = tf.stack([x_t_flat],axis=2),tf.stack([y_t_flat],axis=2),tf.stack([z_t_flat],axis=2) #source control points x,y,z = tf.linspace(-1.,1.,self.X_controlP_number),tf.linspace(-1.,1.,self.Y_controlP_number),tf.linspace(-1.,1.,self.Z_controlP_number) x = tf.tile(x,[self.Y_controlP_number*self.Z_controlP_number]) y = tf.tile(self._repeat(y,self.X_controlP_number,'float32'),[self.Z_controlP_number]) z = self._repeat(z,self.X_controlP_number*self.Y_controlP_number,'float32') xs,ys,zs = tf.transpose(tf.reshape(x,(-1,1))),tf.transpose(tf.reshape(y,(-1,1))),tf.transpose(tf.reshape(z,(-1,1))) cpx,cpy,cpz = tf.transpose(tf.stack([xs],axis=2),perm=[1,0,2]),tf.transpose(tf.stack([ys],axis=2),perm=[1,0,2]),tf.transpose(tf.stack([zs],axis=2),perm=[1,0,2]) px, cpx = tf.meshgrid(px,cpx);py, cpy = tf.meshgrid(py,cpy); pz, cpz = tf.meshgrid(pz,cpz) #Compute distance R Rx,Ry,Rz = tf.square(tf.subtract(px,cpx)),tf.square(tf.subtract(py,cpy)),tf.square(tf.subtract(pz,cpz)) R = tf.add(tf.add(Rx,Ry),Rz) R = tf.multiply(R,tf.log(tf.clip_by_value(R,1e-10,1e+10))) #Source coordinates ones = tf.ones_like(x_t_flat) grid = tf.concat([ones, x_t_flat, y_t_flat,z_t_flat,R],0) return grid