Python tensorflow.logical_xor() Examples
The following are 10
code examples of tensorflow.logical_xor().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testBCast(self): shapes = [ ([1, 3, 2], [1]), ([1, 3, 2], [2]), ([1, 3, 2], [3, 2]), ([1, 3, 2], [3, 1]), ([1, 3, 2], [1, 3, 2]), ([1, 3, 2], [2, 3, 1]), ([1, 3, 2], [2, 1, 1]), ([1, 3, 2], [1, 3, 1]), ([2, 1, 5], [2, 3, 1]), ([2, 0, 5], [2, 0, 1]), ([2, 3, 0], [2, 3, 1]), ] for (xs, ys) in shapes: x = np.random.randint(0, 2, np.prod(xs)).astype(np.bool).reshape(xs) y = np.random.randint(0, 2, np.prod(ys)).astype(np.bool).reshape(ys) for use_gpu in [True, False]: self._compareBinary(x, y, np.logical_and, tf.logical_and, use_gpu) self._compareBinary(x, y, np.logical_or, tf.logical_or, use_gpu) self._compareBinary(x, y, np.logical_xor, tf.logical_xor, use_gpu)
Example #2
Source File: utils.py From zhusuan with MIT License | 5 votes |
def __xor__(self, other): return tf.logical_xor(self, other)
Example #3
Source File: utils.py From zhusuan with MIT License | 5 votes |
def __rxor__(self, other): return tf.logical_xor(other, self) # boolean operations
Example #4
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testScalar(self): data = [np.array([True]), np.array([False])] for use_gpu in [True, False]: for x in data: self._not(x, use_gpu) for x in data: for y in data: self._compareBinary( x, y, np.logical_and, tf.logical_and, use_gpu) self._compareBinary( x, y, np.logical_or, tf.logical_or, use_gpu) self._compareBinary( x, y, np.logical_xor, tf.logical_xor, use_gpu)
Example #5
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testTensor(self): x = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2) y = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2) for use_gpu in [True, False]: self._not(x, use_gpu) self._compareBinary(x, y, np.logical_and, tf.logical_and, use_gpu) self._compareBinary(x, y, np.logical_or, tf.logical_or, use_gpu) self._compareBinary(x, y, np.logical_xor, tf.logical_xor, use_gpu)
Example #6
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testShapeMismatch(self): x = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2) y = np.random.randint(0, 2, 6).astype(np.bool).reshape(3, 2, 1) for f in [tf.logical_and, tf.logical_or, tf.logical_xor]: with self.assertRaisesWithPredicateMatch( ValueError, lambda e: "Dimensions must" in str(e)): f(x, y)
Example #7
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testOverloadComparisons(self): dtypes = [ tf.float16, tf.float32, tf.float64, tf.int32, tf.int64, ] funcs = [ (np.less, _LT), (np.less_equal, _LE), (np.greater, _GT), (np.greater_equal, _GE), ] for dtype in dtypes: for np_func, tf_func in funcs: self._compareBinary(10, 5, dtype, np_func, tf_func) logical_funcs = [ (np.logical_and, _AND), (np.logical_or, _OR), (np.logical_xor, _XOR), (np.equal, tf.equal), (np.not_equal, tf.not_equal) ] for np_func, tf_func in logical_funcs: self._compareBinary(True, False, tf.bool, np_func, tf_func) self._compareBinary(True, True, tf.bool, np_func, tf_func) self._compareBinary(False, False, tf.bool, np_func, tf_func) self._compareBinary(False, True, tf.bool, np_func, tf_func) self._compareBinary([True, True, False, False], [True, False, True, False], tf.bool, np_func, tf_func) self._compareUnary(True, tf.bool, np.logical_not, _INV) self._compareUnary(False, tf.bool, np.logical_not, _INV) self._compareUnary([True, False], tf.bool, np.logical_not, _INV)
Example #8
Source File: tf_visitor_impl.py From deep500 with BSD 3-Clause "New" or "Revised" License | 5 votes |
def visit_xor(self, op: d5.ops.Xor, network: TensorflowNetwork): A, B = network.fetch_internal_tensors([op.i_A, op.i_B]) C = tf.logical_xor(A, B) network.feed_internal_tensor(op.o_C, C)
Example #9
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 5 votes |
def test_logical_xor(): with tf.Graph().as_default(): in1 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name='in1') in2 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name='in2') out = tf.logical_xor(in1, in2, name='out') in_data1 = np.random.choice( a=[False, True], size=(1, 4, 4, 3)).astype('bool') in_data2 = np.random.choice( a=[False, True], size=(1, 4, 4, 3)).astype('bool') compare_tf_with_tvm([in_data1, in_data2], ['in1:0', 'in2:0'], 'out:0')
Example #10
Source File: loss.py From D3Feat with MIT License | 5 votes |
def desc_loss(dists, pids, pos_margin=0.1, neg_margin=1.4, false_negative_mask=None): """Computes the contrastive loss. Args: dists (2D tensor): A square all-to-all distance matrix as given by cdist. pids (1D tensor): The identities of the entries in `batch`, shape (B,). This can be of any type that can be compared, thus also a string. pos_margin, neg_margin (float): the margin for contrastive loss false_negative_mask (2D tensor): A boolean matrix to indicate the false negative within the safe_radius. Returns: A 1D tensor of shape (B,) containing the loss value for each sample. """ with tf.name_scope("desc_loss"): same_identity_mask = tf.equal(tf.expand_dims(pids, axis=1), tf.expand_dims(pids, axis=0)) negative_mask = tf.logical_not(same_identity_mask) if false_negative_mask is not None: negative_mask = tf.logical_and(negative_mask, tf.logical_not(false_negative_mask)) negative_mask.set_shape([None, None]) # positive_mask = tf.logical_xor(same_identity_mask, # tf.eye(tf.shape(pids)[0], dtype=tf.bool)) furthest_positive = tf.reduce_max(dists * tf.cast(same_identity_mask, tf.float32), axis=1) # closest_negative = tf.map_fn(lambda x: tf.reduce_min(tf.boolean_mask(x[0], x[1])), (dists, negative_mask), tf.float32) closest_negative = tf.reduce_min(dists + 1e5 * tf.cast(same_identity_mask, tf.float32), axis=1) # Another way of achieving the same, though more hacky: # closest_negative_col = tf.reduce_min(dists + 1e5*tf.cast(same_identity_mask, tf.float32), axis=1) # closest_negative_row = tf.reduce_min(dists + 1e5*tf.cast(same_identity_mask, tf.float32), axis=0) # closest_negative = tf.minimum(closest_negative_col, closest_negative_row) # # calculate average negative to monitor the training # average_negative = tf.map_fn(lambda x: tf.reduce_mean(tf.boolean_mask(x[0], x[1])), (dists, negative_mask), tf.float32) average_negative = tf.reduce_mean(dists * tf.cast(negative_mask, tf.float32)) * tf.cast(tf.size(pids), tf.float32) / (tf.cast(tf.size(pids), tf.float32) - 1.0) # average_diff = tf.reduce_mean(furthest_positive - average_negative) diff = furthest_positive - closest_negative accuracy = tf.reduce_sum(tf.cast(tf.greater_equal(0., diff), tf.float32)) / tf.cast(tf.shape(diff)[0], tf.float32) # contrastive loss diff = tf.maximum(furthest_positive - pos_margin, 0.0) + tf.maximum(neg_margin - closest_negative, 0.0) return tf.reduce_mean(diff), accuracy, tf.reduce_mean(furthest_positive), tf.reduce_mean(average_negative)