Python tensorflow.reciprocal() Examples
The following are 30
code examples of tensorflow.reciprocal().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: attention.py From glas with Apache License 2.0 | 6 votes |
def _get_filter(self, data, grid, scope=None): """ Generate an attention filter """ with tf.variable_scope(scope, 'filter', [data]): x_offset, y_offset, log_stride, log_scale, log_gamma = tf.split( layers.linear(data, 5, scope='parameters'), 5, axis=1) center = self._get_center(grid, (x_offset, y_offset), tf.exp(log_stride)) scale = tf.expand_dims(tf.maximum(tf.exp(log_scale), self.epsilon), -1) filter_x = 1 + tf.square((self.data_x - center[0]) / tf.maximum(scale, self.epsilon)) filter_y = 1 + tf.square((self.data_y - center[1]) / tf.maximum(scale, self.epsilon)) filter_x = tf.reciprocal(tf.maximum(pi * scale * filter_x, self.epsilon)) filter_y = tf.reciprocal(tf.maximum(pi * scale * filter_y, self.epsilon)) return filter_x, filter_y, tf.exp(log_gamma)
Example #2
Source File: messaging_cell_helpers.py From mac-graph with The Unlicense | 6 votes |
def layer_normalize(tensor): '''Apologies if I've abused this term''' in_shape = tf.shape(tensor) axes = list(range(1, len(tensor.shape))) # Keep batch axis t = tf.reduce_sum(tensor, axis=axes ) t += EPSILON t = tf.reciprocal(t) t = tf.check_numerics(t, "1/sum") tensor = tf.einsum('brc,b->brc', tensor, t) tensor = dynamic_assert_shape(tensor, in_shape, "layer_normalize_tensor") return tensor
Example #3
Source File: messaging_cell_helpers.py From shortest-path with The Unlicense | 6 votes |
def layer_normalize(tensor): '''Apologies if I've abused this term''' in_shape = tf.shape(tensor) axes = list(range(1, len(tensor.shape))) # Keep batch axis t = tf.reduce_sum(tensor, axis=axes ) t += EPSILON t = tf.reciprocal(t) t = tf.check_numerics(t, "1/sum") tensor = tf.einsum('brc,b->brc', tensor, t) tensor = dynamic_assert_shape(tensor, in_shape, "layer_normalize_tensor") return tensor
Example #4
Source File: sparse.py From sparse_convolution with MIT License | 6 votes |
def sparse_conv(tensor,binary_mask = None,filters=32,kernel_size=3,strides=2,l2_scale=0.0): if binary_mask == None: #first layer has no binary mask b,h,w,c = tensor.get_shape() channels=tf.split(tensor,c,axis=3) #assume that if one channel has no information, all channels have no information binary_mask = tf.where(tf.equal(channels[0], 0), tf.zeros_like(channels[0]), tf.ones_like(channels[0])) #mask should only have the size of (B,H,W,1) features = tf.multiply(tensor,binary_mask) features = tf.layers.conv2d(features, filters=filters, kernel_size=kernel_size, strides=(strides, strides), trainable=True, use_bias=False, padding="same",kernel_regularizer=tf.contrib.layers.l2_regularizer(scale=l2_scale)) norm = tf.layers.conv2d(binary_mask, filters=filters,kernel_size=kernel_size,strides=(strides, strides),kernel_initializer=tf.ones_initializer(),trainable=False,use_bias=False,padding="same") norm = tf.where(tf.equal(norm,0),tf.zeros_like(norm),tf.reciprocal(norm)) _,_,_,bias_size = norm.get_shape() b = tf.Variable(tf.constant(0.0, shape=[bias_size]),trainable=True) feature = tf.multiply(features,norm)+b mask = tf.layers.max_pooling2d(binary_mask,strides = strides,pool_size=kernel_size,padding="same") return feature,mask
Example #5
Source File: modules.py From PlaneNet with MIT License | 6 votes |
def planeDepthsModule(plane_parameters, width, height, info): urange = (tf.range(width, dtype=tf.float32) / (width + 1) * (info[16] + 1) - info[2]) / info[0] urange = tf.tile(tf.reshape(urange, [1, -1]), [height, 1]) vrange = (tf.range(height, dtype=tf.float32) / (height + 1) * (info[17] + 1) - info[6]) / info[5] vrange = tf.tile(tf.reshape(vrange, [-1, 1]), [1, width]) ranges = tf.stack([urange, np.ones([height, width]), -vrange], axis=2) ranges = tf.reshape(ranges, [-1, 3]) planesD = tf.norm(plane_parameters, axis=1, keep_dims=True) planesD = tf.clip_by_value(planesD, 1e-5, 10) planesNormal = tf.div(tf.negative(plane_parameters), tf.tile(planesD, [1, 3])) normalXYZ = tf.matmul(ranges, planesNormal, transpose_b=True) normalXYZ = tf.multiply(tf.sign(normalXYZ), tf.clip_by_value(tf.abs(normalXYZ), 1e-4, 1000000)) normalXYZ = tf.reciprocal(normalXYZ) plane_depths = tf.negative(normalXYZ) * tf.reshape(planesD, [-1]) plane_depths = tf.reshape(plane_depths, [height, width, -1]) plane_depths = tf.clip_by_value(plane_depths, 0, 10) return plane_depths
Example #6
Source File: modules.py From PlaneNet with MIT License | 6 votes |
def planeDepthsModule(plane_parameters, width, height, info): urange = (tf.range(width, dtype=tf.float32) / (width + 1) * (info[16] + 1) - info[2]) / info[0] urange = tf.tile(tf.reshape(urange, [1, -1]), [height, 1]) vrange = (tf.range(height, dtype=tf.float32) / (height + 1) * (info[17] + 1) - info[6]) / info[5] vrange = tf.tile(tf.reshape(vrange, [-1, 1]), [1, width]) ranges = tf.stack([urange, np.ones([height, width]), -vrange], axis=2) ranges = tf.reshape(ranges, [-1, 3]) planesD = tf.norm(plane_parameters, axis=1, keep_dims=True) planesD = tf.clip_by_value(planesD, 1e-5, 10) planesNormal = tf.div(tf.negative(plane_parameters), tf.tile(planesD, [1, 3])) normalXYZ = tf.matmul(ranges, planesNormal, transpose_b=True) normalXYZ = tf.multiply(tf.sign(normalXYZ), tf.clip_by_value(tf.abs(normalXYZ), 1e-4, 1000000)) normalXYZ = tf.reciprocal(normalXYZ) plane_depths = tf.negative(normalXYZ) * tf.reshape(planesD, [-1]) plane_depths = tf.reshape(plane_depths, [height, width, -1]) plane_depths = tf.clip_by_value(plane_depths, 0, 10) return plane_depths
Example #7
Source File: modules.py From PlaneNet with MIT License | 6 votes |
def planeDepthsModule(plane_parameters, width, height, info): urange = (tf.range(width, dtype=tf.float32) / (width + 1) * (info[16] + 1) - info[2]) / info[0] urange = tf.tile(tf.reshape(urange, [1, -1]), [height, 1]) vrange = (tf.range(height, dtype=tf.float32) / (height + 1) * (info[17] + 1) - info[6]) / info[5] vrange = tf.tile(tf.reshape(vrange, [-1, 1]), [1, width]) ranges = tf.stack([urange, np.ones([height, width]), -vrange], axis=2) ranges = tf.reshape(ranges, [-1, 3]) planesD = tf.norm(plane_parameters, axis=1, keep_dims=True) planesD = tf.clip_by_value(planesD, 1e-5, 10) planesNormal = tf.div(tf.negative(plane_parameters), tf.tile(planesD, [1, 3])) normalXYZ = tf.matmul(ranges, planesNormal, transpose_b=True) normalXYZ = tf.multiply(tf.sign(normalXYZ), tf.clip_by_value(tf.abs(normalXYZ), 1e-4, 1000000)) normalXYZ = tf.reciprocal(normalXYZ) plane_depths = tf.negative(normalXYZ) * tf.reshape(planesD, [-1]) plane_depths = tf.reshape(plane_depths, [height, width, -1]) plane_depths = tf.clip_by_value(plane_depths, 0, 10) return plane_depths
Example #8
Source File: modules.py From PlaneNet with MIT License | 6 votes |
def planeDepthsModule(plane_parameters, width, height): focalLength = 517.97 urange = (tf.range(width, dtype=tf.float32) / (width + 1) - 0.5) / focalLength * 641 urange = tf.tile(tf.reshape(urange, [1, -1]), [height, 1]) vrange = (tf.range(height, dtype=tf.float32) / (height + 1) - 0.5) / focalLength * 481 vrange = tf.tile(tf.reshape(vrange, [-1, 1]), [1, width]) ranges = tf.stack([urange, np.ones([height, width]), -vrange], axis=2) ranges = tf.reshape(ranges, [-1, 3]) planesD = tf.norm(plane_parameters, axis=1, keep_dims=True) planesD = tf.clip_by_value(planesD, 1e-5, 10) planesNormal = tf.div(tf.negative(plane_parameters), tf.tile(planesD, [1, 3])) normalXYZ = tf.matmul(ranges, planesNormal, transpose_b=True) normalXYZ = tf.multiply(tf.sign(normalXYZ), tf.clip_by_value(tf.abs(normalXYZ), 1e-4, 1000000)) normalXYZ = tf.reciprocal(normalXYZ) plane_depths = tf.negative(normalXYZ) * tf.reshape(planesD, [-1]) plane_depths = tf.reshape(plane_depths, [height, width, -1]) plane_depths = tf.clip_by_value(plane_depths, 0, 10) return plane_depths
Example #9
Source File: test_tf_wpe.py From nara_wpe with MIT License | 5 votes |
def test_recursive_wpe(self): with self.test_session() as sess: T = 5000 D = 2 K = 1 delay = 3 Y = np.random.normal(size=(D, T)) \ + 1j * np.random.normal(size=(D, T)) Y = tf.convert_to_tensor(Y[None]) power = tf.reduce_mean(tf.real(Y) ** 2 + tf.imag(Y) ** 2, axis=1) inv_power = tf.reciprocal(power) step_enhanced = tf_wpe.wpe_step( Y, inv_power, taps=K, delay=D) recursive_enhanced = tf_wpe.recursive_wpe( tf.transpose(Y, (2, 0, 1)), tf.transpose(power), 1., taps=K, delay=D, only_use_final_filters=True ) recursive_enhanced = tf.transpose(recursive_enhanced, (1, 2, 0)) recursive_enhanced, step_enhanced = sess.run( [recursive_enhanced, step_enhanced] ) np.testing.assert_allclose( recursive_enhanced[..., -200:], step_enhanced[..., -200:], atol=0.01, rtol=0.2 )
Example #10
Source File: matrix_structures.py From VFF with Apache License 2.0 | 5 votes |
def inv(self): di = tf.reciprocal(self.d) d_col = tf.expand_dims(self.d, 1) DiW = self.W / d_col M = tf.eye(tf.shape(self.W)[1], float_type) + tf.matmul(tf.transpose(DiW), self.W) L = tf.cholesky(M) v = tf.transpose(tf.matrix_triangular_solve(L, tf.transpose(DiW), lower=True)) return LowRankMatNeg(di, V)
Example #11
Source File: matrix_structures.py From VFF with Apache License 2.0 | 5 votes |
def inv(self): di = tf.reciprocal(self.d) Div = self.v * di M = 1. + tf.reduce_sum(Div * self.v) v_new = Div / tf.sqrt(M) return Rank1MatNeg(di, v_new)
Example #12
Source File: matrix_structures.py From VFF with Apache License 2.0 | 5 votes |
def inv(self): return DiagMat(tf.reciprocal(self.d))
Example #13
Source File: blocks.py From fold with Apache License 2.0 | 5 votes |
def _tf_safe_reciprocal(x): return tf.reciprocal(x + tf.cast(tf.equal(x, 0), x.dtype))
Example #14
Source File: tf_wpe.py From nara_wpe with MIT License | 5 votes |
def get_power_inverse(signal): """Calculates inverse power for `signal` Args: signal (tf.Tensor): Single frequency signal with shape (D, T). psd_context: context for power estimation Returns: tf.Tensor: Inverse power with shape (T,) """ power = get_power(signal) eps = 1e-10 * tf.reduce_max(power) inverse_power = tf.reciprocal(tf.maximum(power, eps)) return inverse_power
Example #15
Source File: model.py From incremental-sequence-learning with MIT License | 5 votes |
def get_mixture_coef( self, args, output ): # returns the tf slices containing mdn dist params # ie, eq 18 -> 23 of http://arxiv.org/abs/1308.0850 z = output #get the remaining parameters last = args.nroutputvars_raw - args.nrClassOutputVars z_eos = z[ :, 0 ] z_eos = tf.sigmoid( z_eos ) #eos: sigmoid, eq 18 z_eod = z[ :, 1 ] z_eod = tf.sigmoid( z_eod ) #eod: sigmoid z_pi, z_mu1, z_mu2, z_sigma1, z_sigma2, z_corr = tf.split( z[ :, 2:last ], 6, 1 ) #eq 20: mu1, mu2: no transformation required # process output z's into MDN parameters # softmax all the pi's: max_pi = tf.reduce_max( z_pi, 1, keep_dims = True ) z_pi = tf.subtract( z_pi, max_pi ) #EdJ: subtract max pi for numerical stabilization z_pi = tf.exp( z_pi ) #eq 19 normalize_pi = tf.reciprocal( tf.reduce_sum( z_pi, 1, keep_dims = True ) ) z_pi = tf.multiply( normalize_pi, z_pi ) #19 # exponentiate the sigmas and also make corr between -1 and 1. z_sigma1 = tf.exp( z_sigma1 ) #eq 21 z_sigma2 = tf.exp( z_sigma2 ) z_corr_tanh = tf.tanh( z_corr ) #eq 22 z_corr_tanh = .95 * z_corr_tanh #avoid -1 and 1 z_corr_tanh_adj = z_corr_tanh return [ z_pi, z_mu1, z_mu2, z_sigma1, z_sigma2, z_corr_tanh_adj, z_eos, z_eod ]
Example #16
Source File: losses.py From label-reg with Apache License 2.0 | 5 votes |
def cauchy_kernel1d(sigma): # this is an approximation if sigma == 0: return 0 else: tail = int(sigma*5) # k = tf.reciprocal(([((x/sigma)**2+1)*sigma*3.141592653589793 for x in range(-tail, tail+1)])) k = tf.reciprocal([((x/sigma)**2+1) for x in range(-tail, tail + 1)]) return k / tf.reduce_sum(k)
Example #17
Source File: losses.py From Pixel2Mesh with Apache License 2.0 | 5 votes |
def laplace_coord(pred, placeholders, block_id): vertex = tf.concat([pred, tf.zeros([1,3])], 0) indices = placeholders['lape_idx'][block_id-1][:, :8] weights = tf.cast(placeholders['lape_idx'][block_id-1][:,-1], tf.float32) weights = tf.tile(tf.reshape(tf.reciprocal(weights), [-1,1]), [1,3]) laplace = tf.reduce_sum(tf.gather(vertex, indices), 1) laplace = tf.subtract(pred, tf.multiply(laplace, weights)) return laplace
Example #18
Source File: quasi_newton.py From neupy with MIT License | 5 votes |
def safe_reciprocal(value, epsilon): """ The same as regular function in the tensorflow accept that it ensures that non of the input values have magnitude smaller than epsilon. Otherwise small values will be capped to the epsilon. """ inv_epsilon = 1. / epsilon return tf.clip_by_value( tf.reciprocal(value), -inv_epsilon, inv_epsilon )
Example #19
Source File: messaging_cell_helpers.py From mac-graph with The Unlicense | 5 votes |
def calc_normalized_adjacency(context, node_state): # Aggregate via adjacency matrix with normalisation (that does not include self-edges) adj = tf.cast(context.features["kb_adjacency"], tf.float32) degree = tf.reduce_sum(adj, -1, keepdims=True) inv_degree = tf.reciprocal(degree) node_mask = tf.expand_dims(tf.sequence_mask(context.features["kb_nodes_len"], context.args["kb_node_max_len"]), -1) inv_degree = tf.where(node_mask, inv_degree, tf.zeros(tf.shape(inv_degree))) inv_degree = tf.where(tf.greater(degree, 0), inv_degree, tf.zeros(tf.shape(inv_degree))) inv_degree = tf.check_numerics(inv_degree, "inv_degree") adj_norm = inv_degree * adj adj_norm = tf.cast(adj_norm, node_state.dtype) adj_norm = tf.check_numerics(adj_norm, "adj_norm") node_incoming = tf.einsum('bnw,bnm->bmw', node_state, adj_norm) return node_incoming
Example #20
Source File: fwgrad_tests.py From tensorflow-forward-ad with MIT License | 5 votes |
def test_basic(self): with tf.Graph().as_default(), self.test_session() as sess: rnd = np.random.RandomState(0) x = self.get_random_tensor([18, 12], rnd=rnd) y = tf.reciprocal(x) self.assert_bw_fw(sess, x, y, rnd=rnd)
Example #21
Source File: losses.py From Pixel2MeshPlusPlus with BSD 3-Clause "New" or "Revised" License | 5 votes |
def laplace_coord(pred, placeholders, block_id): vertex = tf.concat([pred, tf.zeros([1, 3])], 0) indices = placeholders['lape_idx'][block_id - 1][:, :8] weights = tf.cast(placeholders['lape_idx'][block_id - 1][:, -1], tf.float32) weights = tf.tile(tf.reshape(tf.reciprocal(weights), [-1, 1]), [1, 3]) laplace = tf.reduce_sum(tf.gather(vertex, indices), 1) laplace = tf.subtract(pred, tf.multiply(laplace, weights)) return laplace
Example #22
Source File: layers.py From text-gan-tensorflow with MIT License | 5 votes |
def _apply_dropout_mask(tensor_shape, keep_prob=1.0, normalize=True): random_tensor = keep_prob + tf.random_uniform(tensor_shape, dtype=tf.float32) binary_mask = tf.floor(random_tensor) if normalize: binary_mask = tf.reciprocal(keep_prob) * binary_mask return binary_mask
Example #23
Source File: tf_lib.py From phillip with GNU General Public License v3.0 | 5 votes |
def power(x, p): if p == 1: return x if p == -1: return tf.reciprocal(x) return tf.pow(x, p)
Example #24
Source File: hc_deeplab.py From SIGGRAPH18SSS with MIT License | 5 votes |
def lossfunction(self, tweightmat, tindicator, tembeddings): with tf.variable_scope('loss_computation') as scope: # tembeddings: #pts x 64 sqrvals = tf.reduce_sum(tf.square(tembeddings), 1, keep_dims=True) # sqrvals: #pts x 1 sqrvalsmat = tf.tile(sqrvals, [1, tf.shape(sqrvals)[0]]) sqrvalsmat2 = tf.add(sqrvalsmat,tf.transpose(sqrvalsmat)) distmat = tf.add(sqrvalsmat2, tf.scalar_mul(-2.0, tf.matmul(tembeddings, tf.transpose(tembeddings))))/64.0 sigmamat = tf.scalar_mul(2.0, tf.reciprocal(1.0+tf.exp(distmat))) posnegmapping = tf.log(tf.add(tf.scalar_mul(0.5, 1.0-tindicator), tf.multiply(tindicator, sigmamat))) wcrossentropy = tf.multiply(tf.negative(tindicator+2.0), posnegmapping) lossval = tf.reduce_mean(wcrossentropy) return lossval
Example #25
Source File: estimator.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def _compute_tower_grads(self, tower_loss, tower_params, use_fp16=False, loss_scale=None, colocate_gradients_with_ops=True): """docstring.""" if use_fp16: assert loss_scale scaled_loss = tf.multiply( tower_loss, tf.convert_to_tensor(loss_scale, dtype=tower_loss.dtype), name="scaling_loss") else: scaled_loss = tower_loss grads = tf.gradients( scaled_loss, tower_params, colocate_gradients_with_ops=colocate_gradients_with_ops) assert grads for g in grads: assert g.dtype == tf.float32, "grad.dtype isn't fp32: %s" % g.name # Downscale grads for var, grad in zip(tower_params, grads): if grad is None: misc_utils.print_out("%s gradient is None!" % var.name) if use_fp16: grads = [ grad * tf.reciprocal(loss_scale) for grad in grads ] return tower_params, grads
Example #26
Source File: estimator.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def _compute_tower_grads(self, tower_loss, tower_params, use_fp16=False, loss_scale=None, colocate_gradients_with_ops=True): """docstring.""" if use_fp16: assert loss_scale scaled_loss = tf.multiply( tower_loss, tf.convert_to_tensor(loss_scale, dtype=tower_loss.dtype), name="scaling_loss") else: scaled_loss = tower_loss grads = tf.gradients( scaled_loss, tower_params, colocate_gradients_with_ops=colocate_gradients_with_ops) assert grads for g in grads: assert g.dtype == tf.float32, "grad.dtype isn't fp32: %s" % g.name # Downscale grads for var, grad in zip(tower_params, grads): if grad is None: misc_utils.print_out("%s gradient is None!" % var.name) if use_fp16: grads = [ grad * tf.reciprocal(loss_scale) for grad in grads ] return tower_params, grads
Example #27
Source File: estimator.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def _compute_tower_grads(self, tower_loss, tower_params, use_fp16=False, loss_scale=None, colocate_gradients_with_ops=True): """docstring.""" if use_fp16: assert loss_scale scaled_loss = tf.multiply( tower_loss, tf.convert_to_tensor(loss_scale, dtype=tower_loss.dtype), name="scaling_loss") else: scaled_loss = tower_loss grads = tf.gradients( scaled_loss, tower_params, colocate_gradients_with_ops=colocate_gradients_with_ops) assert grads for g in grads: assert g.dtype == tf.float32, "grad.dtype isn't fp32: %s" % g.name # Downscale grads for var, grad in zip(tower_params, grads): if grad is None: misc_utils.print_out("%s gradient is None!" % var.name) if use_fp16: grads = [ grad * tf.reciprocal(loss_scale) for grad in grads ] return tower_params, grads
Example #28
Source File: messaging_cell.py From shortest-path with The Unlicense | 5 votes |
def calc_normalized_adjacency(context, node_state): # Aggregate via adjacency matrix with normalisation (that does not include self-edges) adj = tf.cast(context.features["kb_adjacency"], tf.float32) degree = tf.reduce_sum(adj, -1, keepdims=True) inv_degree = tf.reciprocal(degree) node_mask = tf.expand_dims(tf.sequence_mask(context.features["kb_nodes_len"], context.args["kb_node_max_len"]), -1) inv_degree = tf.where(node_mask, inv_degree, tf.zeros(tf.shape(inv_degree))) inv_degree = tf.where(tf.greater(degree, 0), inv_degree, tf.zeros(tf.shape(inv_degree))) inv_degree = tf.check_numerics(inv_degree, "inv_degree") adj_norm = inv_degree * adj adj_norm = tf.cast(adj_norm, node_state.dtype) adj_norm = tf.check_numerics(adj_norm, "adj_norm") node_incoming = tf.einsum('bnw,bnm->bmw', node_state, adj_norm) return node_incoming
Example #29
Source File: attention.py From glas with Apache License 2.0 | 5 votes |
def write(self, data): """ Do a filtered write given the data """ if not self.write_grid: raise ValueError('Writing is not supported') filter_x, filter_y, gamma = self.get_filter(data, self.write_grid, scope='write/filter') filter_y_transpose = tf.transpose(filter_y, [0, 2, 1]) window = layers.linear(data, reduce_prod(self.write_grid.size)) window = tf.reshape(window, (-1, self.write_grid.size[1], self.write_grid.size[0])) patch = tf.matmul(filter_y_transpose, tf.matmul(window, filter_x)) return tf.reciprocal(tf.maximum(gamma, self.epsilon)) * layers.flatten(patch)
Example #30
Source File: deeplab_model.py From SketchySceneColorization with MIT License | 4 votes |
def _batch_norm(self, name, x): """Batch normalization.""" with tf.variable_scope(name): params_shape = [x.get_shape()[-1]] beta = tf.get_variable( 'beta', params_shape, tf.float32, initializer=tf.constant_initializer(0.0, tf.float32), trainable=False) gamma = tf.get_variable( 'gamma', params_shape, tf.float32, initializer=tf.constant_initializer(1.0, tf.float32), trainable=False) factor = tf.get_variable( 'factor', 1, tf.float32, initializer=tf.constant_initializer(1.0, tf.float32), trainable=False) if self.bn: mean, variance = tf.nn.moments(x, [0, 1, 2], name='moments') moving_mean = tf.get_variable( 'mean', params_shape, tf.float32, initializer=tf.constant_initializer(0.0, tf.float32), trainable=False) moving_variance = tf.get_variable( 'variance', params_shape, tf.float32, initializer=tf.constant_initializer(1.0, tf.float32), trainable=False) self._extra_train_ops.append(moving_averages.assign_moving_average( moving_mean, mean, 0.9)) self._extra_train_ops.append(moving_averages.assign_moving_average( moving_variance, variance, 0.9)) else: mean = tf.get_variable( 'mean', params_shape, tf.float32, initializer=tf.constant_initializer(0.0, tf.float32), trainable=False) variance = tf.get_variable( 'variance', params_shape, tf.float32, initializer=tf.constant_initializer(1.0, tf.float32), trainable=False) # inv_factor = tf.reciprocal(factor) inv_factor = tf.div(1., factor) mean = tf.multiply(inv_factor, mean) variance = tf.multiply(inv_factor, variance) # tf.summary.histogram(mean.op.name, mean) # tf.summary.histogram(variance.op.name, variance) # elipson used to be 1e-5. Maybe 0.001 solves NaN problem in deeper net. y = tf.nn.batch_normalization( x, mean, variance, beta, gamma, 0.001) y.set_shape(x.get_shape()) return y